Fast Track to Sun
Certified Java
Programmer (SCJP)
5.0 Upgrade Exam

Publisher:

Author's email:

Book website:
Notice:

Edition:

Copyright © 2006
Ka lok 'Kent' Tong

TipTec Development
freemant2000@yahoo.com
http://www.agileskills2.org

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

First edition 2006

Fast Track to Sun Certified Java Programmer (SCJP) 5.0 3

Foreword

Learn the new features in Java SE 5.0

If you'd like to learn the new features in Java SE 5.0 and pass the Sun
Certified Java Programmer Upgrade Exam (CX-310-056), then this book is for
you. Why?

« It covers all the Java SE 5.0 new features covered in the exam. You don't
need to read about the features you already know.

* ltis clear & concise. No need to go through hundreds of pages.
» | have passed the exam. So | know what you'll be up against.
* ltincludes 117 review questions and mock exam questions.

* Many working code fragments are used to show the semantics of the code
construct concerned.

» The first 30 pages are freely available on http://www.agileskills2.org. You
can judge it yourself.

Target audience and prerequisites

This book is suitable for those who would like to:

* Learn the new features in Java SE 5.0; or

» Take the Sun Certified Java Programmer Upgrade Exam.

In order to understand what's in the book, you need to know the basics of
Java. In order to take the exam, you also need to have passed a previous
version of the exam.

Acknowledgments
I'd like to thank:
» Helena Lei for proofreading this book.

» Eugenia Chan Peng U for doing the book cover and the layout design.

4 Fast Track to Sun Certified Java Programmer (SCJP) 5.0

Table of Contents

FOrBWOI. ... e 3
Learn the new features in Java SE 5.0...........cccccvvviieeiennnnnn. 3
Target audience and prerequisites..........ccccoveeeeiiiiiiiiiiiiiieeeees 3
AcCKNOWIEdgmENtS........oovuiiiiiiiec e 3

Chapter 1 AUtObOXING.......ceiiiiieeiiiiie e 9
What's in this chapter?............ooveiiiiiiiiie, 10
AULODOXING. ... 10
AULO UNDOXING....cciiiiiiii e 10
Other CONtEXIS........coe i 11
Autoboxing and method name overloading..................uuee..... 11
SUMIMAIY ...ttt e e e e e e e e e e e e e e eannes 12
Review qUESTHIONS.........oooiiiiiiie e 13
Answers to review qUestions...........cccceeeeeeeeeeiiieeeeee 14
10Tl Q== o 15
Answers to the mock exam.............oovveviiiiiiiiiiccceee e 17

Chapter 2 GENErICS.....cccciee e 19
What's in this chapter?............iiiiiiiiee, 20
USING GENEIICS. ..cceiiiiiiiiiiieeiiite ettt 20

Parameterized types are compile-time properties of variables..
21
Assignment compatibility between parameterized type

Variables. ..o 23
Comparing a Listtoan array............ccoooovrvieiiiiiccccceeee, 24
Wildcard type........ooooiiiiiiiiieee e 25
Constraining a type parameter.............cccoovvvvvvvviiiiveeeicenn, 27
Writing generic methods...........ccooovviiiiii e, 28
Specifying a lower bound.................ovvviiiiiiiiiiiieieeeeeeeeeeee 28
Use a wildcard or a type variable?..........cccccovvvvvviviiiiicceennn. 29
Integrating legacy code with generic-aware code.................. 30
Generics and method overriding...........cceceeiieiiiiiiieeeeeeeeeee, 32
Generics and method name overloading..............cccccuvnnneee. 34
Common MIStaKES.......ccuuiiiiiiiiiiiiiee e 34
SUMIMAIY ..ttt e e e e e e e e e e e e e aannes 35
Review qUESTHIONS.........oooiiiiiie e 36
Answers to review qUestions..........ccccceeeeeeeeieiiiieieeeee 38

MOCK ©XAM.. e 42

Fast Track to Sun Certified Java Programmer (SCJP) 5.0 5

Answers to the mocK eXam..........ccooeeeiieieiiiiiiiiieeeeees 45
Chapter 3 For-each l00p......cccooivieiiiiiiii 47
What's in this chapter?...........cooooiiiiiii e, 48
FOr-each 100p........oooiiiiieee e 48
SUMMIIY ...ttt e e e e e e e 50
Review qUESHIONS............uiiiiiiiii e 51
Answers to review qUeStioNS.........cccceeeeeieeeiiiieeeeeeeees 52
MOCK XM, 53
Answers to the MOocK eXam.........ccceeeeeiiieeiiiiiieecceeees 54
Chapter 4 Manipulating Collections...........cccccoeeeeiiiiiiiieieninnnnn. 55
What's in this chapter?.........cccceeiiiiiiiie, 56
Sorting and searching a List........cccccoeeiiiiiiiiiiiiiie, 56
Sorting and searching an array..........ccccceeeeeeeeeeiieeeeeeeeeeeeee, 57
Converting a Collection into an array............cccceeeeeeeeiieennne. 57
Converting an array into a List........cccoooeeeiiiii, 58
SUMMAIY ... e 59
Review qUESHIONS...........uiiiiiiiiice e 60
Answers to review qUEeSHIONS.........cccoeeveeeieeiiiiiieiceeeeeeis 61
MOCK ©€X8M.....uiiiiiiieee e 62
Answers to the MOoCK eXam..........ccooeeeiieeeeiiiiiiiieeeeies 63
Chapter 5 Variable Arity Parameters.........ccccoeeeeiiiiii. 65
What's in this chapter?............ooooiiiiiiii s 66
L6 L g To =T Z= T =1 o U 66
Vararg and method name overloading.............ccccceeeeiiinnnnnnn. 66
Vararg and method overriding..........cooooviiiiiiiiiiiiiieeeeeeeeee 67
SUMMAIY ...ttt e e e e e e e e e e 68
ReView qQUESTIONS.........oeieiiiiiiiiccre e 69
Answers to review qUEeStioNS.........cccceeeeeeeeeiiiiee e 70
MOCK ©XAIM.....uniiiiiiieee e a e e e 71
Answers to the mock exam............coooeviiiiiiiiiiiiiiiie e, 72
Chapter 6 ENUML......ccooii e 73
What's in this chapter?...........oooieiiiiiiiiiieceeeeeee, 74
Creating an enum Class............eeeeeviiiiiiiiiiiiiieeeeeeee 74
Converting between an enum value and a string.................. 76
Comparing enum Values.............cooviiiiiiiiiiiiiiieeeeeeee e 76
Iterating all the values inan enum.............cccccceeieieineiiicenenn, 76
Building a set of enum values.................ccooeiiiiiiiiiiieiiii, 77
Adding data and behaviors to an enum...............cccccceeeeeeees 77

The ENUmM base ClaSS.c.ooeeeee e 78

6 Fast Track to Sun Certified Java Programmer (SCJP) 5.0

SUMIMAIY ...ttt e e e e e e e e e e e e e aannes 80
ReVview qQUESTHIONS.........cooiiiieeeeeeee e 81
Answers to review qUestions...........ccceeeeeeeeieeiiieeeeeeee 82
1Yo Tod (== T o 83
Answers to the mock exam.............coovviiiiiiiiiie e 85
Chapter 7 Static Imports..........oooevviiiiiieicccce e 87
What's in this chapter?............iiiiiiiiee, 88
Static IMPOIS.....cooeeeeeeeeee e 88
Static imports and enums.............ccoooi i 89
SUMMANY ... eeeeeanaans 89
Review qUESHIONS..........ocuuiiiiiiiiiiie e 90
Answers to review qUEeStioNS..........ccovvviiiiiiiee e, 91
MOCK ©X8IM ...ttt 92
Answers to the mock exam............cooovviiiiiiiii e 93
Chapter 8 Covariant Return Types........cccccciiiiiiiiiiieiiieeeeeeeee 95
What's in this chapter?.............oeeiiiiiiiiiee, 96
Narrowing the return type..........ccooevviiiiiiii e, 96
SUMMAIY ...t r e e e e e e e e e e e e e e e annnnes 97
Review qUESHIONS...........ouuiiiiiiiiecc e 98
Answers to review qUestions...........ccooeeeieeiieiiiiiiies 99
MOCK ©X8M ...ttt 100
Answers to the mock exam............ooooviiiiiiiiiiiiiin 101
Chapter 9 Java l/O.......ccceeeee e 103
What's in this chapter?...........oooiiii 104
Using the File Class..........coiiiiiiiiiieeeeeeee e 104
INPUESTream........ooeee s 104
OUtPULSTream........ooeeeee e 105
Reading and writing primitive values...............cccccoeeeeeennnnn. 106
Reading and writing Strings.............ueeeiiiiiiiiee, 106
Buffered reading/Writing...........cccouviiiiiiii 107
Reading and writing primitive data as text strings............... 108
Reading and writing objects...........cccciiiiiiiii e, 108
Versioning in object serialization.............cccccccvviiiiiiiiiinnnnee. 110
SUMMAIY ... e e e e e e e e e e e e e e e e e eeeaanaans 111
Review qUESHIONS..........oouuiiiiiieiii e 112
Answers to review qUEeStioONS..........ccceuvviiiiiiiiiiiiiie e, 114
MOCK ©XaM...coiiiiiiiiiii i 116
Answers to the mock exam..............cooooiiiiiiiiiiiiiiin 119

Chapter 10 Formatting and Parsing.............cccoovviiiiiiiiiiiinnnnnn, 121

Fast Track to Sun Certified Java Programmer (SCJP) 5.0 7

What's in this chapter?............ooiiiiii 122
LOCAIE. ... 122
Formatting and parsing numbers.............cccccceiiini, 123
Formatting and parsing dates..............cccccciiiiiiiiicie, 125
Formatting several values.................cccoiiiiiiis 127
Formatter.......oo 127
Using regular @XpresSSioNS.........oovveeeeiciiiriiiiieeeeee e e e 130
Parsing text data..........cccooo e 134
SUMMIAIY ...ttt ettt e e e e e e e e e e e eeees 134
Review qUESHIONS..........cuuiiiiiiieiiie e 136
Answers to review qUEeStioNS..........ccooeiiiiiiiiiiiiii e, 139
MOCK XM, 142
Answers to the MOCK eXam..........ccooveeiiiiiiiiiiiiiiiiceeeeeeiies 145
Chapter 11 Preparing for the Exam.................ccceeriiiiiiiiinnnnnn, 147
Exam format.......ooooiiiiiii 148
Exam syllabus.........ccooorriiiii 149
Freely available mock exams on the Internet...................... 149

RETEIENCES. ..o e 151

Ghapter 1

Autoboxing

10 Chapter 1 Autoboxing

What's in this chapter?

In this chapter you'll learn about autoboxing.

Autoboxing

In J2SE 1.4 or earlier, you can't directly add say an int to a collection because
it needs an Object. You need to wrap it into an Integer object:
List list = new ArrayList();

list.add(100); //error: 100 is not an Object
list.add(new Integer (100)); //OK

This action of wrapping is called "boxing". In JSE 5.0, whenever the compiler
sees that you're trying to assign a primitive value to a variable of a reference
type, it will automatically insert the code to convert the primitive value into a
wrapper object for you (int => Integer, long => Long, float => Float, double =>
Double, etc.):

List list = new ArrayList();
list.add(100);

This is OK in JSE 5.0. The
compiler may turn this line
into

[list.add (new Integer (100));

This is called "autoboxing". It not only works for collections, but also for all
kinds of assignments:

Integer i = 100; //OK
Integer[] a = new Integer[] { new Integer(2), 4, 1, 3}; //OK
g (100) ;

&éid g(Integer i) {
.

Because it is valid to have:
byte b;

b = 100; //100 is an int but it's a constant & within the scope of a byte,
//so it's converted to a byte.

JSE 5.0 will also allow:

Byte b;
b = 100; //converted to a byte and then to a Byte (autoboxing)
Byte[] bs = new Byte[] {100, -128, 127}; //do that for each element

Auto unboxing

The reverse also works: If you'd like to assign say an Integer object to an int
variable, it will be "unboxed" automatically:

int i = new Integer (100); //OK
Integer([] a = new Integer[] { new Integer(2), new Integer(5) };

Autoboxing 11

int j = al0]; //OK

List list = new ArrayList();
list.add(new Integer (10));

int k = (Integer)list.get(0); //OK

Other contexts

Autoboxing and auto unboxing occur not only in assignments, but also in other
contexts where the conversion is clearly desired. For example, in an if-
statement:

if (Boolean.TRUE) { //OK

}
In an arithmetic expression:
int i = 10+new Integer(2)*3; //i is 16

Integer j = 10;
j++; //3 is 11

In a logical expression:

if (new Integer(2) > 1) { //OK
}
In a casting:
((Integer)100) .hashCode (); //OK
((Short)100) .hashCode (); //Error: Short is not the right wrapper

Autoboxing and method name overloading

Check the code below:

class Foo {
void g(int x) {
System.out.println("a");
}
void g(long x) {
System.out.println("b");
}

void g(Integer x) {
System.out.println("c");

) }

new Foo () .g(10) ;
What will it print? It will print "a". When the compiler is trying to determine
which method it is calling, it will first ignore autoboxing and unboxing. So the
first two g() methods are applicable but the third g() is inapplicable. Because
the first g() is more specific than the second, it is used. If there were no
applicable method, then it would allow autoboxing and unboxing. For example,
if the code were:

class Foo {
void g(byte x) {
System.out.println("a");
}
void g(char x) {
System.out.println("b");

12 Chapter 1 Autoboxing

}
void g(Integer x) {
System.out.println("c");
}
}
new Foo() .g(10);
Then the first two g() methods would be inapplicable because byte and char
are narrower than int (the type of the value 10). Then it would proceed to allow
autoboxing and find that the third g() would be applicable, so it would be called
and would print "c".

Summary

Autoboxing converts an primitive value to a wrapper object. Auto unboxing
does the opposite. They work in assignments and other contexts where the
conversion is clearly desired.

When finding applicable methods, autoboxing and unboxing are first disabled,
so existing code will not be affected by them. If there is no applicable method,
they will be enabled to allow more methods.

Autoboxing

Review questions

1. Will the following code compile?

boolean b = Boolean.TRUE;
if (b) {

}

13

2. Will the following code compile?

if (Boolean.TRUE) {

}
3. Will the following code compile?

((Boolean) true) .hashCode () ;
4. Will the following code compile?

1

Object[] a = new Object[] { 'a', true, 10.0d, 123, "xyz" };

5. What is the output of the following code?

public class Foo {
void g(double d) {
System.out.println("d");
}
void g (Number num) {
System.out.println ("num") ;
}
void g(Object obj) {
System.out.println("obj");
}
public static void main(String[] args) {
new Foo().g(10);
new Foo () .g(new Integer (10));
}
}

14 Chapter 1 Autoboxing

Answers to review questions

1. Will the following code compile?

boolean b = Boolean.TRUE;
if (b) {

o
Yes. Autoboxing occurs in the assignment.

2. Will the following code compile?
if (new Integer (10)==10) {

.
Yes. Autoboxing occurs in the logical expression.

3. Will the following code compile?

((Boolean) true) .hashCode () ;
Yes. Autoboxing occurs in a type cast.

4. Will the following code compile?

Object[] a = new Object[] { 'a', true, 10.0d, 123, "xyz" };
Yes. Autoboxmg works for a char, a boolean, a double, an int. For "xyz" there
is no autoboxing needed.

5. What is the output of the following code?

public class Foo ({
void g(double d) {
System.out.println("d");
}
void g (Number num) {
System.out.println ("num") ;
}
void g(Object obj) {
System.out.println("obj");
}
public static void main(String[] args) {
new Foo().g(10);
new Foo().g(new Integer (10));
}
}

For the first call, it will print "d". Because double is wider than int, so the first g
() is applicable. At the beginning, autoboxing and unboxing are not
considered, so the second and third g() are not applicable. So the first g() is
the only applicable method and thus is used.

For the second call, at the beginning autoboxing and unboxing are not
considered, so the first g() is inapplicable but the second and third g()
methods are. Because the second is more specific than the third, it is used.

Autoboxing

Mock exam

1

4

. What is true about the following code?

1. short sl 100;
2. Short s2 sl;
3. Integer i = sl;

. There is a compile error at line 1.

a
b. There is a compile error at line 2.
c. There is a compile error at line 3.
d. It will compile fine.

. What is true about the following code?

1 Integer i = 10;

2. int j = 5;

3. 1if (i.compareTo(j) > 0) {

4 System.out.println ("OK") ;
5 }

a 'It will print "OK".

b. It will print nothing.

c. There is a compile error at line 2.
d. There is a compile error at line 3.

. What is true about the following code?

1 int i = 10;

2. 1Integer j = 5;

3. if (i.compareTo(j) > 0) {

4 System.out.println ("OK") ;
5 }

a .It will print "OK".

b. It will print nothing.

c. There is a compile error at line 2.
d. There is a compile error at line 3.
. W

hat is true about the following code?

1 class Foo {
2 void g(int 1) {
3 System.out.println("a");
4 }
5 }
6 class Bar extends Foo {
7. void g(Integer i) {
8 System.out.println ("b");
9. }
10. }
11. ...
12. Bar b = new Bar();
13. b.g(10);
a. It will print "a".

15

16 Chapter 1 Autoboxing

b. It will print "b".
c. It will print "ab".

d. It won't compile because the g() in Bar can't override the g() in Foo.

Autoboxing 17

Answers to the mock exam
1. c. Autoboxing will convert a short to a Short, but not to an Integer.

2. a. "|" will be converted to an Integer automatically when it is passed to
compareTo().

3. d. "i" will not be converted to an Integer automatically because there is no
assignment nor casting there.

4. a. The g() in Bar is not overriding the g() in Foo. It is just overloading the
name "g". When determining which method to call, autoboxing is not
considered first so only the g() in Foo is applicable and thus is used.

19

Ghapter 2

Generics

20 Chapter 2 Generics

What's in this chapter?

In this chapter you'll learn how to use generics and how to create your own.

Using generics

In J2SE 1.4 or earlier, the collection types were like:

interface Collection {
void add(Object obj);

}

interface List extends Collection {
Object get(int idx);

}

class ArraylList implements List {

}
In JSE 5.0, they have been changed to:
interface Collection<E> {
void add(E obj);
}
interface List<E> extends Collection<E> {
E get (int idx);
}
class ArrayList<E> implements List<E> {
o
The "E" represents the type of the element of the collection. It is called a "type
parameter". When you use them, you need to specify a type as the actual
value of E:

List<String> list = new ArrayList<String>(); //It reads "a List of Strings"
You can imagine that the compiler will generate code like:

interface Collection<String> {
void add(String obj); //can only add String

}

interface List<String> extends Collection<String> {
String get (int idx); //will return a String

}

class ArraylList<String> implements List<String> {

}
It means that you can call add() and pass a String object but not other types of
objects. When you call get(), it will return a String, not an Object:

list.add("hello"); //OK
list.add(new Integer(10)); //Error! In J2SE 1.4 it would be OK
String s = list.get(0); //No need to type cast to String anymore

The Collection and List interfaces are called "generic interfaces". The
ArrayList class is a "generic class". When you provide a type argument, the
resulting types such as List<String> or ArrayList<String> are called
"parameterized types", while the original types (List, ArrayList) are called "raw
types". The act of providing a type argument is called "invocation".

Similarly, the Set interface and its implementation classes are also generic:

Generics 21

Set<Integer> set = new TreeSet<Integer>(); //Integer implements Comparable
set.add (new Integer(2));

set.add (5); //OK. Autoboxing.

set.add("hello"); //Error!

if (set.contains(2)) { //It will be true

}
So are Map and its implementation classes:

//It has two type parameters
interface Map<K,V> {

void put (K key, V value);
}

//Key 1is an Integer. Value is a String. Integer implements hashCode () .
Map<Integer, String> map = new HashMap<Integer, String>();

map.put (3, "a");

map.put (5, "b");

map.put (4, 2); //Error!

map.put ("c", 2); //Error!

String s = map.get(5); //It is "b"

Now, the Iterator interface is also generic:

interface Collection<E> {
Iterator<E> iterator();

}

interface Iterator<E> ({
boolean hasNext () ;
E next():;

}

Therefore, you can iterate a list like this:

List<String> list new ArrayList<String>(); //a List of Strings

list.add("a");

list.add("b");

for (Iterator<String> iter = list.iterator(); iter.hasNext();) {
String s = iter.next(); //No need to type cast

System.out.println(s);
}

Parameterized types are compile-time properties of
variables

Consider the code:

List<String> listl = new ArrayList<String>();

List<Integer> 1list2 = new ArrayList<Integer>();

listl = list2; //Error

list2 = listl; //Error

if (listl.getClass()==list2.getClass()) { //It will be true!

}
It means the two List objects actually belong to the same class! This is true.
When the compiler sees the List interface, it will remove E and change it into
Object and use the result as the runtime class (called the "erasure" of the
generic class):

interface Collection {

void add(Object obj);
}

interface List extends Collection ({

22 Chapter 2 Generics

Object get (int idx);
}
class ArrayList implements List {

.
When you invoke it like this:

List<String> listl = new ArrayList<String>();
The compiler will note that the type of the variable list1 is List with the binding
of E=String. Later, suppose that there is some code calling add() on list1:

listl.add(...);
The compiler knows that the type of list1 is List. So it checks the definition of
Collection, it finds that the parameter's type of add() is E:

interface Collection<E> {

void add(E obj);

}

interface List<E> extends Collection<E> {
E get (int idx);

}

From the binding in list1, it notes that E=String, so it will check to make sure
the method argument is assignment compatible with String. If it is say an
Integer, then the compiler will treat it as an error.

Similarly, if you call get() on list1:

String s = listl.get(0);
From the definition of Collection, the compiler finds that the return type of get()
is E. From the binding in list1 it notes that E=String, so it will insert some code
to type cast the result to a String:

String s = (String)listl.get (0);
That is how generic works. The code we imagined before:
interface Collection<String> {
void add(String obj); //can only add String
interface List<String> extends Collection<String> {

String get (int idx); //will return a String
}

class ArrayList<String> implements List<String> {

}
is never generated. At runtime only the raw types exist. The type bindings are
properties of variables at compile-time only. They are used during compilation
for type checking (as for add()) or to generate type cast code (as for get()). At
runtime, the type bindings and the parameterized types no longer exist.
Because the "new" operator runs at runtime, new'ing a parameterized type
really doesn't make sense:

List<String> list = new ArrayList<String>();

So, at runtime, what it does is exactly the same as:

List<String> list = new ArrayList();
However, at compile-time, the <String> is indeed required so that the compiler
knows that the type of the expression is ArrayList<String>.

Generics 23

As another example, let's write a class Pair to represent a pair of objects of
the same type. You may try:
class Pair<iE> {

E objl; //Compiled as "Object objl". Doesn't affect anything at runtime.
E obj2; //Compiled as "Object obj2". Doesn't affect anything at runtime.

Pair () {
objl = new E(); //Compiled as "new Object()". Affects runtime. Error.
obj2 = new E(); //Compiled as "new Object()". Affects runtime. Error.

}
void setObjl(E o) { //Compiled as "Object o". Doesn't affect runtime.
objl = o;
}
}

Assignment compatibility between parameterized
type variables

Obviously the code below won't compile:

List<String> listl = new ArrayList<String>();
List<Integer> list2 = new ArrayList<Integer>();
listl = list2; //Compile error

list2 = listl; //Compile error

But what about:

class Animal {
}
class Dog extends Animal {

}

List<Animal> listl = new ArrayList<Animal>();
List<Dog> list2 = new ArrayList<Dog>();
listl = list2; //OK?

Intuitively, a List of Dog should be a List of Animal. But this is not the case
here:

List<Animal> listl = new ArrayList<Animal>();

List<Dog> list2 = new ArrayList<Dog>();

listl = 1list2; //OK? No!

listl.add (new Animal());

Dog d = list2.get(0); //Runtime error!

For list1, the binding is E=Animal. It means the object it points to can accept
any Animal object through its add() method (see the diagram below). For list2,
the binding is E=Dog. It means the object it points to can accept any Dog
object through its add() method. Obviously we can't just let list1 point to the
object pointed to by list2 because that object doesn't accept any Animals, but
just Dogs. Our intuition would be correct if the list objects were read-only (e.g.,
only had a get() method).

24 Chapter 2 Generics

list1: The object |
point to can accept

any %ni,—»

void add(Animal x)

[:3 void add(Dog x)

list2: The object |
point to can accept
any Dog

Therefore, the Java compiler will consider two parameterized types of the
same raw type completely unrelated at compile-time and are thus assignment
incompatible.

Comparing a List to an array

See if the code below works:

Generic Array
List<Dog> dogs = new ArrayList<Dog>(); Dog[] dogs = new Dog[1l0];
List<Animal> animals = dogs; Animal[] animals = dogs;

As said before, the code on the left hand side won't compile. As a List of Dogs
will accept only Dogs but not Animals, you can't assign a List<Dog> to a
List<Animal>. But surprisingly, the array version on the right hand side works.
It allows you to assign Bar[] to Foo[] if Bar is a subclass of Foo. It means it will
allow dangerous code to compile:

Dog[] dogs = new Dog[10];

Animal[] animals = dogs; //Dangerous!

animals[0] = new Animal (); //Putting an Animal into a Dog array!
Dog d = dogs[0]; //It is not a Dog!

Why it allows such code to compile? Because it has very good runtime
checking. When you create an array in Java, it remembers that its element
type (e.g., the Dog array above knows its element type is Dog). When you try
to put an object into its element, it will perform runtime checking to make sure
itis a Dog:

Dog[] dogs = new Dog[l1l0];

Animal[] animals = dogs;

animals[0] = new Animal(); //Runtime error
Dog d = dogs[0]; //Won't reach this line

Because generics only work at compile-time, they can't perform any runtime
checking. Therefore, it takes a strict stance at compile time and forbids you to
assign a List<Dog> to a List<Animal>. In contrast, arrays can rely on runtime
checking, so it is more relaxed at compile time.

Now, check if the code below compiles:

class MyList<E> {

Generics 25

E[] objs; //Compiled as "Object[] objs". Doesn't affect runtime.

MyList () {
E = new E[100]; //OK? No!
}
}

It won't compile. Because an array needs to know its element type when it is
created at runtime, the element type must not be a type variable (which
doesn't exist at runtime and has been compiled as the type "Object").

Similarly, you can't use a parameterized type as the element type of an array:

List<String>[] list; //OK
list = new List<String>[10]; //Compile error

Wildcard type

When you provide a type argument for a List, you may write something like:

List<?> listl;
The "?" represents a type that is unknown to the variable "list1". Such a type is
called a "wildcard type". In this case, it is setting the binding E=? for variable
"list1" where E is the type parameter in List. This means that list1 is asserting
that the object it points to has an add() method that accepts an object of a
certain type (unknown to list1) and a get() method that returns an object of a
certain type (unknown to list1):

class List<?> {

void add(? obj);

? get(int idx);
}

It means that we can't add any object to it because we don't know the right
type:

List<?> listl;

listl.add("a"); //Compile error. It could accept only Integer.
listl.add(100); //Compile error. It could accept only String.
listl.add(new Object()); //Compile error. It could accept only Integer.

listl.add(null); //OK! This is the only thing that you can add to it because
// null belongs to any class.

We may call get() but we don't know the return type either:
List<?> listl;
Object obj = listl.get(0); //Can only declare it as Object

If there is another variable "list2" like below, can you assign list2 to list1?
List<?> listl;

List<String> list2;
listl = list2; //OK?

To answer that question, you need to note the meaning of list2 having the type
of List<String>. It means that list2 is asserting that the object it points to has
an add() method that accepts an object of the String type and a get() method
that returns an object of the String type:
class List<String> {
void add(String obj);

String get (int idx);
}

