
4
Flow Control,
Exceptions, and
Assertions

CERTIFICATION OBJECTIVES

• Writing Code Using if and switch
Statements

• Writing Code Using Loops

• Handling Exceptions

• Working with the Assertion Mechanism

✓ Two-Minute Drill

Q&A Self Test

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4
Blind Folio 4:211

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Can you imagine trying to write code using a language that didn’t give you a way to
execute statements conditionally? In other words, a language that didn’t let you say,
“If this thing over here is true, then I want this thing to happen; otherwise, do this other

thing instead.” Flow control is a key part of most any useful programming language, and Java offers
several ways to do it. Some, like if statements and for loops, are common to most languages.
But Java also throws in a couple flow control features you might not have used before—exceptions
and assertions.

The if statement and the switch statement are types of conditional/decision controls
that allow your program to perform differently at a “fork in the road,” depending on
the result of a logical test. Java also provides three different looping constructs—for,
while, and do-while—so you can execute the same code over and over again
depending on some condition being true. Exceptions give you a clean, simple way to
organize code that deals with problems that might crop up at runtime. Finally, the
assertion mechanism, added to the language with version 1.4, gives you a way to do
debugging checks on conditions you expect to smoke out while developing, when
you don’t necessarily need or want the runtime overhead associated with exception
handling.

With these tools, you can build a robust program that can handle any logical
situation with grace. Expect to see a wide range of questions on the exam that include
flow control as part of the question code, even on questions that aren’t testing your
knowledge of flow control.

CERTIFICATION OBJECTIVE

Writing Code Using if and switch Statements
(Exam Objective 2.1)

Write code using if and switch statements and identify legal argument types for
these statements.

The if and switch statements are commonly referred to as decision statements. When
you use decision statements in your program, you’re asking the program to evaluate
a given expression to determine which course of action to take. We’ll look at the if
statement first.

212 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if-else Branching
The basic format of an if statement is as follows:

if (booleanExpression) {
System.out.println("Inside if statement");

}

The expression in parentheses must evaluate to a boolean true or false result.
Typically you’re testing something to see if it’s true, and then running a code block
(one or more statements) if it is true, and (optionally) another block of code if it
isn’t. We consider it good practice to enclose the blocks within curly braces, even if
there’s only one statement in the block. The following code demonstrates a legal if
statement:

if (x > 3) {
System.out.println("x is greater than 3");

} else {
System.out.println("x is not greater than 3");

}

The else block is optional, so you can also use the following:

if (x > 3) {
y = 2;

}
z += 8;
a = y + x;

The preceding code will assign 2 to y if the test succeeds (meaning x really is greater
than 3), but the other two lines will execute regardless.

Even the curly braces are optional if you have only one statement to execute within
the body of the conditional block. The following code example is legal (although not
recommended for readability):

if (x > 3)
y = 2;

z += 8;
a = y + x;

Be careful with code like this, because you might think it should read as, “If x is
greater than 3, then set y to 2, z to z + 8, and a to y + x.” But the last two lines are

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Writing Code Using if and switch Statements (Exam Objective 2.1) 213

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

214 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

going to execute no matter what! They aren’t part of the conditional flow. You might
find it even more misleading if the code were indented as follows:

if (x > 3)
y = 2;
z += 8;
a = y + x;

You might have a need to nest if-else statements (although, again, not recommended
for readability, so nested if tests should be kept to a minimum). You can set up an
if-else statement to test for multiple conditions. The following example uses two
conditions so that if the first test fails, we want to perform a second test before
deciding what to do:

if (price < 300) {
buyProduct();

} else {
if (price < 400) {

getApproval();
}
else {

dontBuyProduct();
}

}

Sometimes you can have a problem figuring out which if your else goes to, as
follows:

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");
// Which if does this belong to?
else System.out.println("Java master!");

We intentionally left out the indenting in this piece of code so it doesn’t give clues
as to which if statement the else belongs to. Did you figure it out? Java law decrees
that an else clause belongs to the innermost if statement to which it might possibly
belong (in other words, the closest preceding if that doesn’t have an else). In the
case of the preceding example, the else belongs to the second if statement in
the listing. With proper indenting, it would look like this:

if (exam.done())
if (exam.getScore() < 0.61)

System.out.println("Try again.");

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:08:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing Code Using if and switch Statements (Exam Objective 2.1) 215

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

// Which if does this belong to?
else

System.out.println("Java master!");

Following our coding conventions by using curly braces, it would be even easier
to read:

if (exam.done()) {
if (exam.getScore() < 0.61) {

System.out.println("Try again.");
// Which if does this belong to?
} else {

System.out.println("Java master!");
}

}

Don’t get your hopes up about the exam questions being all nice and indented
properly. Some exam takers even have a slogan for the way questions are presented
on the exam: anything that can be made more confusing, will be.

Be prepared for questions that not only fail to indent nicely, but intentionally
indent in a misleading way: Pay close attention for misdirection like the
following example:

if (exam.done())

if (exam.getScore() < 0.61)

System.out.println(“Try again.”);

else

System.out.println(“Java master!”); // Hmmmmm… now where does it belong?

Of course, the preceding code is exactly the same as the previous two examples,
except for the way it looks.

Legal Arguments for if Statements
if statements can test against only a boolean. Any expression that resolves down to
a boolean is fine, but some of the expressions can be complex. Assume doStuff()
returns true,

int y = 5;
int x = 2;
if ((((x > 3) && (y < 2)) | doStuff()) {
System.out.println("true");
}

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:08:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

which prints

true

You can read the preceding code as, “If both (x > 3) and (y < 2) are true, or if the
result of doStuff() is true, then print “true.” So basically, if just doStuff()
alone is true, we’ll still get “true.” If doStuff() is false, though, then both (x > 3)
and (y < 2) will have to be true in order to print “true.”

The preceding code is even more complex if you leave off one set of parentheses
as follows,

int y = 5;
int x = 2;
if ((x > 3) && (y < 2) | doStuff()) {
System.out.println("true");
}

which now prints…nothing! Because the preceding code (with one less set of
parentheses) evaluates as though you were saying, “If (x > 3) is true, and either (y < 2)
or the result of doStuff() is true, then print “true.” So if (x > 3) is not true, no
point in looking at the rest of the expression.” Because of the short-circuit && and
the fact that at runtime the expression is evaluated as though there were parentheses
around ((y< 2) | doStuff()), it reads as though both the test before the
&& (x > 3) and then the rest of the expression after the && (y<2 | doStuff())
must be true.

Remember that the only legal argument to an if test is a boolean. Table 4-1 lists
illegal arguments that might look tempting, compared with a modification to make
each argument legal.

One common mistake programmers make (and that can be difficult to spot),
is assigning a boolean variable when you meant to test a boolean variable.
Look out for code like the following:

boolean boo = false;

if (boo = true) { }

You might think one of three things:
1. The code compiles and runs fine, and the if test fails because boo is false.
2. The code won’t compile because you’re using an assignment (=) rather

than an equality test (==).
3. The code compiles and runs fine and the if test succeeds because boo is

set to true (rather than tested for true) in the if argument!

216 Chapter 4: Flow Control, Exceptions, and Assertions

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:08:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Well, number 3 is correct. Pointless, but correct. Given that the result
of any assignment is the value of the variable after the assignment,
the expression (boo = true) has a result of true. Hence, the if test
succeeds. But the only variable that can be assigned (rather than tested
against something else) is a boolean; all other assignments will result in
something nonboolean, so they’re not legal, as in the following:

int x = 3;

if (x = 5) { } // Won’t compile because x is not a boolean!

Because if tests require boolean expressions, you need to be really solid on both
logical operators and if test syntax and semantics.

switch Statements
Another way to simulate the use of multiple if statements is with the switch statement.
Take a look at the following if-else code, and notice how confusing it can be to have
nested if tests, even just a few levels deep:

int x = 3;
if(x == 1) {

System.out.println("x equals 1");
}
else if(x == 2) {

System.out.println("x equals 2");
}
else if(x == 3) {

System.out.println("x equals 3");
}
else {

System.out.println("No idea what x is");
}

Writing Code Using if and switch Statements (Exam Objective 2.1) 217

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Illegal Arguments to if Legal Arguments to if

int x = 1;
if (x) { }

int x = 1;
if (x == 1) { }

if (0) { } if (false)

if (x = 6) if (x == 6)

TABLE 4-1

Illegal and Legal
Arguments to if

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Now let’s see the same functionality represented in a switch construct:

int x = 3;
switch (x) {

case 1:
System.out.println("x is equal to 1");
break;

case 2:
System.out.println("x is equal to 2");
break;

case 3:
System.out.println("x is equal to 3");
break;

default:
System.out.println("Still no idea what x is");

}

Legal Arguments to switch and case
The only type that a switch can evaluate is the primitive int! That means only
variables and values that can be automatically promoted (in other words, implicitly
cast) to an int are acceptable. So you can switch on any of the following, but
nothing else: byte, short, char, int.

You won’t be able to compile if you use anything else, including the remaining
numeric types of long, float, and double.

The only argument a case can evaluate is one of the same type as switch can
use, with one additional—and big—constraint: the case argument must be final!
The case argument has to be resolved at compile time, so that means you can use
only a constant final variable that is assigned a literal value. It is not enough to be
final, it must be a compile time constant. For example:

final int a = 1;
final int b;
int x = 0;
switch (x) {
case a: // ok
case b: // compiler error

// thx to John Paverd !

Also, the switch can only check for equality. This means that the other relational
operators such as greater than are rendered unusable in a case. The following is an
example of a valid expression using a method invocation in a switch statement. Note
that for this code to be legal, the method being invoked on the object reference must
return a value compatible with an int.

String s = "xyz";
switch (s.length()) {

218 Chapter 4: Flow Control, Exceptions, and Assertions

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:08:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing Code Using if and switch Statements (Exam Objective 2.1) 219

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

case 1:
System.out.println("length is one");
break;

case 2:
System.out.println("length is two");
break;

case 3:
System.out.println("length is three");
break;

default:
System.out.println("no match");

}

The following example uses final variables in a case statement. Note that if the
final keyword is omitted, this code will not compile.

final int one = 1;
final int two = 2;
int x = 1;
switch (x) {

case one: System.out.println("one");
break;

case two: System.out.println("two");
break;

}

One other rule you might not expect involves the question, “What happens if I
switch on a variable smaller than an int?” Look at the following switch example:

byte g = 2;
switch(g) {
case 23:
case 128:
}

This code won’t compile. Although the switch argument is legal—a byte is
implicitly cast to an int—the second case argument (128) is too large for a byte,
and the compiler knows it! Attempting to compile the preceding example gives you
an error:

Test.java:6: possible loss of precision
found : int
required: byte

case 128:
^

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:08:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

It’s also illegal to have more than one case label using the same value. For example,
the following block of code won’t compile because it uses two cases with the same
value of 80:

int temp = 90;
switch(temp) {

case 80 :
System.out.println("80");
break;

case 80 :
System.out.println("80");
break;

case 90:
System.out.println("90");
break;

default:
System.out.println("default");

}

Look for any violation of the rules for switch and case arguments. For example,
you might find illegal examples like the following three snippets:

Integer in = new Integer(4);

switch (in) { }

==================

switch(x) {

case 0 {

y = 7;

}

}

==================

switch(x) {

0: { }

1: { }

}

In the first example, you can’t switch on an Integer object, only an int
primitive. In the second example, the case uses a curly brace and omits
the colon. The third example omits the keyword case.

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

220 Chapter 4: Flow Control, Exceptions, and Assertions

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Default, Break, and Fall-Through in switch Blocks
When the program encounters the keyword break during the execution of a switch
statement, execution will immediately move out of the switch block to the next
statement after the switch. If break is omitted, the program just keeps executing
the different case blocks until either a break is found or the switch statement ends.
Examine the following code:

int x = 1;
switch(x) {

case 1: System.out.println("x is one");
case 2: System.out.println("x is two");
case 3: System.out.println("x is three");

}
System.out.println("out of the switch");

The code will print the following:

x is one
x is two
x is three
out of the switch

This combination occurs because the code didn’t hit a break statement; thus,
execution just kept dropping down through each case until the end. This dropping
down is actually called “fall through,” because of the way execution falls from one
case to the next. Think of the matching case as simply your entry point into the
switch block! In other words, you must not think of it as, “Find the matching case,
execute just that code, and get out.” That’s not how it works. If you do want that
“just the matching code” behavior, you’ll insert a break into each case as follows:

int x = 1;
switch(x) {

case 1: {
System.out.println("x is one");
break;

}
case 2: {

System.out.println("x is two");
break;

}
case 3: {

System.out.println("x is two");

Writing Code Using if and switch Statements (Exam Objective 2.1) 221

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

break;
}

}
System.out.println("out of the switch");

Running the preceding code, now that we’ve added the break statements, will print

x is one
out of the switch

and that’s it. We entered into the switch block at case 1. Because it matched the
switch() argument, we got the println statement, then hit the break and
jumped to the end of the switch.

Another way to think of this fall-through logic is shown in the following code:

int x = someNumberBetweenOneAndTen;

switch (x) {
case 2:
case 4:
case 6:
case 8:
case 10: {

System.out.println("x is an even number");
break;

}
}

This switch statement will print “x is an even number” or nothing, depending on
whether the number is between one and ten and is odd or even. For example, if x is 4,
execution will begin at case 4, but then fall down through 6, 8, and 10, where it
prints and then breaks. The break at case 10, by the way, is not needed; we’re
already at the end of the switch anyway.

The Default Case
What if, using the preceding code, you wanted to print “x is an odd number” if
none of the cases (the even numbers) matched? You couldn’t put it after the switch
statement, or even as the last case in the switch, because in both of those situations
it would always print “x is an odd number.” To get this behavior, you’ll use the
default keyword. (By the way, if you’ve wondered why there is a default
keyword even though we don’t use a modifier for default access control, now you’ll

222 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing Code Using if and switch Statements (Exam Objective 2.1) 223

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

see that the default keyword is used for a completely different purpose.) The
only change we need to make is to add the default case to the preceding code:

int x = someNumberBetweenOneAndTen;

switch (x) {
case 2:
case 4:
case 6:
case 8:
case 10: {

System.out.println("x is an even number");
break;

}
default: System.out.println("x is an odd number");

}

The default case doesn’t have to come at the end of the switch. Look for it in
strange places such as the following:

int x = 2;

switch (x) {

case 2: System.out.println(“2”);

default: System.out.println(“default”);

case 3: System.out.println(“3”);

case 4: System.out.println(“4”);

}

Running the preceding code prints

2

default

3

4

and if we modify it so that the only match is the default case:

int x = 7;

switch (x) {

case 2: System.out.println(“2”);

default: System.out.println(“default”);

case 3: System.out.println(“3”);

case 4: System.out.println(“4”);

}

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Running the preceding code prints
default

3

4

The rule to remember is default works just like any other case for fall-through!

EXERCISE 4-1

Creating a switch-case Statement
Try creating a switch-case statement using a char value as the case. Include a default
behavior if none of the char values match.

1. Make sure a char variable is declared before the switch statement.

2. Each case statement should be followed by a break.

3. The default value can be located at the end, middle, or top.

CERTIFICATION OBJECTIVE

Writing Code Using Loops (Exam Objective 2.2)
Write code using all forms of loops including labeled and unlabeled, use of break
and continue, and state the values taken by loop counter variables during and after
loop execution.

Java loops come in three flavors: while, do-while, and for. All three let you repeat a
block of code as long as some condition is true, or for a specific number of iterations.
You’re probably familiar with loops from other languages, so even if you’re somewhat
new to Java, these won’t be a problem to learn.

224 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using while Loops
The while loop is good for scenarios where you don’t know how many times block
or statement should repeat, but you want it to continue as long as some condition is
true. A while statement looks like this:

int x = 2;
while(x == 2) {

System.out.println(x);
++x;

}

In this case, as in all loops, the expression (test) must evaluate to a boolean result.
Any variables used in the expression of a while loop must be declared before the
expression is evaluated. In other words, you can’t say

while (int x = 2) { }

Then again, why would you? Instead of testing the variable, you’d be declaring and
initializing it, so it would always have the exact same value. Not much of a test
condition!

The body of the while loop will only execute if the condition results in a true
value. Once inside the loop, the loop body will repeat until the condition is no
longer met and evaluates to false. In the previous example, program control will
enter the loop body because x is equal to 2. However, x is incremented in the loop,
so when the condition is checked again it will evaluate to false and exit the loop.

The key point to remember about a while loop is that it might not ever run. If
the test expression is false the first time the while expression is checked, the loop
body will be skipped and the program will begin executing at the first statement
after the while loop. Look at the following example:

int x = 8;
while (x > 8) {

System.out.println("in the loop");
x = 10;

}
System.out.println("past the loop");

Running this code produces

past the loop

Writing Code Using Loops (Exam Objective 2.2) 225

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Although the test variable x is incremented within the while loop body, the program
will never see it. This is in contrast to the do-while loop that executes the loop body
once, and then does the first test.

Using do-while Loops
The following shows a do-while statement in action:

do {
System.out.println("Inside loop");

} while(false);

The System.out.println() statement will print once, even though the
expression evaluates to false. The do-while loop will always run the code in the loop
body at least once. Be sure to note the use of the semicolon at the end of the while
expression.

As with if tests, look for while loops (and the while test in a do-while loop) with
an expression that does not resolve to a boolean. Take a look at the following
examples of legal and illegal while expressions:

int x = 1;

while (x) { } // Won’t compile; x is not a boolean

while (x = 5) { } // Won’t compile; resolves to 5 (result of assignment)

while (x == 5) { } // Legal, equality test

while (true) { } // Legal

Using for Loops
The for loop is especially useful for flow control when you already know how many
times you need to execute the statements in the loop’s block. The for loop declaration
has three main parts, besides the body of the loop:

■ Declaration and initialization of variables

■ The boolean expression (conditional test)

■ The iteration expression

226 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Each of the three for declaration parts is separated by a semicolon. The following
two examples demonstrate the for loop. The first example shows the parts of a for
loop in a pseudocode form, and the second shows typical syntax of the loop.

for (/*Initialization*/ ; /*Condition*/ ; /* Iteration */) {
/* loop body */

}

for (int i = 0; i<10; i++) {
System.out.println("i is " + i);

}

Declaration and Initialization
The first part of the for statement lets you declare and initialize zero, one, or multiple
variables of the same type inside the parentheses after the for keyword. If you declare
more than one variable of the same type, then you’ll need to separate them with
commas as follows:

for (int x = 10, y = 3; y > 3; y++) { }

The declaration and initialization happens before anything else in a for loop. And whereas
the other two parts—the boolean test and the iteration expression—will run with
each iteration of the loop, the declaration and initialization happens just once, at the
very beginning. You also must know that the scope of variables declared in the for loop
ends with the for loop! The following demonstrates this:

for (int x = 1; x < 2; x++) {
System.out.println(x); // Legal

}
System.out.println(x); // Not Legal! x is now out of scope and
can't be accessed.

If you try to compile this, you’ll get

Test.java:19: cannot resolve symbol
symbol : variable x
location: class Test
System.out.println(x);

^

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Writing Code Using Loops (Exam Objective 2.2) 227

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Conditional (boolean) Expression
The next section that executes is the conditional expression, which (like all other
conditional tests) must evaluate to a boolean value. You can have only one logical
expression, but it can be very complex. Look out for code that uses logical expressions
like this:

for (int x = 0; ((((x < 10) && (y-- > 2)) | x == 3)); x++) { }

The preceding code is legal, but the following is not:

for (int x = 0; (x > 5), (y < 2); x++) { } // too many
//expressions

The compiler will let you know the problem:

TestLong.java:20: ';' expected
for (int x = 0; (x > 5), (y < 2); x++) { }

^

The rule to remember is this: You can have only one test expression. In other words,
you can’t use multiple tests separated by commas, even though the other two parts
of a for statement can have multiple parts.

Iteration Expression
After each execution of the body of the for loop, the iteration expression is executed.
This part is where you get to say what you want to happen with each iteration of
the loop. Remember that it always happens after the loop body runs! Look at the
following:

for (int x = 0; x < 1; x++) {
// body code here

}

The preceding loop executes just once. The first time into the loop x is set to 0, then
x is tested to see if it’s less than 1 (which it is), and then the body of the loop executes.
After the body of the loop runs, the iteration expression runs, incrementing x by 1.
Next, the conditional test is checked, and since the result is now false, execution
jumps to below the for loop and continues on. Keep in mind that this iteration
expression is always the last thing that happens ! So although the body may never execute
again, the iteration expression always runs at the end of the loop block, as long as no

228 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:16:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

other code within the loop causes execution to leave the loop. For example, a break,
return, exception, or System.exit() will all cause a loop to terminate
abruptly, without running the iteration expression. Look at the following code:

static boolean doStuff() {
for (int x = 0; x < 3; x++) {

System.out.println("in for loop");
return true;

}
return true;

}

Running this code produces

in for loop

The statement only prints once, because a return causes execution to leave
not just the current iteration of a loop, but the entire method. So the iteration
expression never runs in that case. Table 4-2 lists the causes and results of abrupt
loop termination.

for Loop Issues
None of the three sections of the for declaration are required! The following
example is perfectly legal (although not necessarily good practice):

for(; ;) {
System.out.println("Inside an endless loop");

}

In the preceding example, all the declaration parts are left out so it will act like
an endless loop. For the exam, it’s important to know that with the absence of the

Writing Code Using Loops (Exam Objective 2.2) 229

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Code in Loop What Happens

break Execution jumps immediately to the first statement after the for loop.

return Execution immediately jumps back to the calling method.

System.exit() All program execution stops; the VM shuts down.

TABLE 4-2 Causes of Early Loop Termination

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

initialization and increment sections, the loop will act like a while loop. The following
example demonstrates how this is accomplished:

int i = 0;

for (;i<10;) {
i++;
//do some other work

}

The next example demonstrates a for loop with multiple variables in play. A comma
separates the variables, and they must be of the same type. Remember that the
variables declared in the for statement are all local to the for loop, and can’t be used
outside the scope of the loop.

for (int i = 0,j = 0; (i<10) && (j<10); i++, j++) {
System.out.println("i is " + i + "j is " +j);

}

Variable scope plays a large role in the exam. You need to know that a variable
declared in the for loop can’t be used beyond the for loop. But a variable only
initialized in the for statement (but declared earlier) can be used beyond the loop.
For example, the following is legal,

int x = 3;

for (x = 12; x < 20, x++) { }

System.out.println(x);

while this is not,

for (int x = 3; x < 20; x++) { }System.out.println(x);

The last thing to note is that all three sections of the for loop are independent of each
other. The three expressions in the for statement don’t need to operate on the same
variables, although they typically do. But even the iterator expression, which many
mistakenly call the “increment expression,” doesn’t need to increment or set anything;
you can put in virtually any arbitrary code statements that you want to happen with
each iteration of the loop. Look at the following:

int b = 3;
for (int a = 1; b != 1; System.out.println("iterate")) {

b = b - a;
}

230 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Writing Code Using Loops (Exam Objective 2.2) 231

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

The preceding code prints

iterate
iterate

Most questions in the new (1.4) exam list “Compilation fails” and “An exception
occurs at runtime” as possible answers. This makes it more difficult because
you can’t simply work through the behavior of the code. You must first make
sure the code isn’t violating any fundamental rules that will lead to compiler
error, and then look for possible exceptions, and only after you’ve satisfied
those two should you dig into the logic and flow of the code in the question.

Using break and continue in for Loops
The break and continue keywords are used to stop either the entire loop (break)
or just the current iteration (continue). Typically if you’re using break or continue,
you’ll do an if test within the loop, and if some condition becomes true (or false
depending on the program), you want to get out immediately. The difference between
them is whether or not you continue with a new iteration or jump to the first statement
below the loop and continue from there.

continue statements must be inside a loop; otherwise, you’ll get a compiler
error. break statements must be used inside either a loop or switch statement.
(Note: This does not apply to labeled break statements.)

The break statement causes the program to stop execution of the innermost
looping and start processing the next line of code after the block.

The continue statement causes only the current iteration of the innermost loop
to cease and the next iteration of the same loop to start if the condition of the loop is
met. When using a continue statement with a for loop, you need to consider the
effects that continue has on the loop iteration. Examine the following code, which
will be explained afterward.

for (int i = 0; i < 10; i++) {
System.out.println("Inside loop");
continue;

}

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:08:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The question is, is this an endless loop? The answer is no. When the continue
statement is hit, the iteration expression still runs! It runs just as though the current
iteration ended “in the natural way.” So in the preceding example, i will still increment
before the condition (i < 10) is checked again. Most of the time, a continue is
used within an if test as follows:

for (int i = 0; i < 10; i++) {
System.out.println("Inside loop");
if (foo.doStuff() == 5) {
continue;

}
// more loop code, that won't be reached when the above if
//test is true

}

Unlabeled Statements
Both the break statement and the continue statement can be unlabeled or
labeled. Although it’s far more common to use break and continue unlabeled,
the exam expects you to know how labeled break and continue work. As stated
before, a break statement (unlabeled) will exit out of the innermost looping construct
and proceed with the next line of code beyond the loop block. The following example
demonstrates a break statement:

boolean problem = true;
while (true) {

if (problem) {
System.out.println("There was a problem");
break;

}
}
//next line of code

In the previous example, the break statement is unlabeled. The following is
another example of an unlabeled continue statement:

while (!EOF) {
//read a field from a file
if (there was a problem) {

//move to the next field in the file
continue;

}
}

232 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, there is a file being read from one field at a time. When an error
is encountered, the program moves to the next field in the file and uses the continue
statement to go back into the loop (if it is not at the end of the file) and keeps reading
the various fields. If the break command were used instead, the code would stop
reading the file once the error occurred and move on to the next line of code. The
continue statement gives you a way to say, “This particular iteration of the loop
needs to stop, but not the whole loop itself. I just don’t want the rest of the code in
this iteration to finish, so do the iteration expression and then start over with the
test, and don’t worry about what was below the continue statement.”

Labeled Statements
You need to understand the difference between labeled and unlabeled break and
continue. The labeled varieties are needed only in situations where you have a
nested loop, and need to indicate which of the nested loops you want to break from,
or from which of the nested loops you want to continue with the next iteration.
A break statement will exit out of the labeled loop, as opposed to the innermost
loop, if the break keyword is combined with a label. An example of what a label
looks like is in the following code:

foo:
for (int x = 3; x < 20; x++) {

while(y > 7) {
y--;

}
}

The label must adhere to the rules for a valid variable name and should adhere to
the Java naming convention. The syntax for the use of a label name in conjunction
with a break statement is the break keyword, then the label name, followed by
a semicolon. A more complete example of the use of a labeled break statement is
as follows:

outer:
for(int i=0; i<10; i++) {

while (y > 7) {
System.out.println("Hello");
break outer;

} // end of inner for loop
System.out.println("Outer loop."); // Won't print

Writing Code Using Loops (Exam Objective 2.2) 233

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

} // end of outer for loop
System.out.println("Good-Bye");

Running this code produces

Hello
Good-Bye

In this example the word Hello will be printed one time. Then, the labeled break
statement will be executed, and the flow will exit out of the loop labeled outer. The
next line of code will then print out Good-Bye. Let’s see what will happen if the
continue statement is used instead of the break statement. The following code
example is the same as the preceding one, with the exception of substituting
continue for break:

outer:
for (int i=0; i<10; i++) {

for (int j=0; j<5; j++) {
System.out.println("Hello");
continue outer;

} // end of inner loop
System.out.println("outer"); // Never prints

}
System.out.println("Good-Bye");

Running this code produces

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Good-Bye

In this example, Hello will be printed ten times. After the continue statement
is executed, the flow continues with the next iteration of the loop identified with the
label. Finally, when the condition in the outer loop evaluates to false, the i loop
will finish and Good-Bye will be printed.

234 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Handling Exceptions (Exam Objectives 2.3 and 2.4) 235

EXERCISE 4-2

Creating a Labeled while Loop
Try creating a labeled while loop. Make the label outer and provide a condition to
check whether a variable age is less than or equal to 21. Within the loop, it should
increment the age by one. Every time it goes through the loop, it checks whether
the age is 16. If it is, it will print a message to get your driver’s license and continue
to the outer loop. If not, it just prints “Another year.”

1. The outer label should appear just before the while loop begins. It does not
matter if it is on the same line or not.

2. Make sure age is declared outside of the while loop.

Labeled continue and break statements must be inside the loop that has
the same label name; otherwise, the code will not compile.

CERTIFICATION OBJECTIVE

Handling Exceptions (Exam Objectives 2.3 and 2.4)
Write code that makes proper use of exceptions and exception handling clauses (try,
catch, finally) and declares methods and overriding methods that throw exceptions.

Recognize the effect of an exception arising at a specified point in a code fragment.
Note that the exception may be a runtime exception, a checked exception, or an error
(the code may include try, catch, or finally clauses in any legitimate combination).

An old maxim in software development says that 80 percent of the work is used
20 percent of the time. The 80 percent refers to the effort required to check and
handle errors. In many languages, writing program code that checks for and deals
with errors is tedious and bloats the application source into confusing spaghetti.
Still, error detection and handling may be the most important ingredient of any
robust application. Java arms developers with an elegant mechanism for handling
errors that produces efficient and organized error-handling code: exception handling.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Exception handling allows developers to detect errors easily without writing
special code to test return values. Even better, it lets us keep exception-handling code
cleanly separated from the exception-generating code. It also lets us use the same
exception-handling code to deal with a range of possible exceptions.

The exam has two objectives covering exception handling, but because they’re
covering the same topic we’re covering both objectives with the content in this section.

Catching an Exception Using try and catch
Before we begin, let’s introduce some terminology. The term exception means
“exceptional condition” and is an occurrence that alters the normal program flow.
A bunch of things can lead to exceptions, including hardware failures, resource
exhaustion, and good old bugs. When an exceptional event occurs in Java, an
exception is said to be thrown. The code that’s responsible for doing something
about the exception is called an exception handler, and it catches the thrown exception.

Exception handling works by transferring the execution of a program to an
appropriate exception handler when an exception occurs. For example, if you call
a method that opens a file but the file cannot be opened, execution of that method
will stop, and code that you wrote to deal with this situation will be run. Therefore,
we need a way to tell the JVM what code to execute when a certain exception happens.
To do this, we use the try and catch keywords. The try is used to define a
block of code in which exceptions may occur. This block of code is called a guarded
region (which really means “risky code goes here”). One or more catch clauses
match a specific exception (or class of exceptions—more on that later) to a block
of code that handles it. Here’s how it looks in pseudocode:

1. try {
2. // This is the first line of the "guarded region"
3. // that is governed by the try keyword.
4. // Put code here that might cause some kind of exception.
5. // We may have many code lines here or just one.
6. }
7. catch(MyFirstException) {
8. // Put code here that handles this Exception.
9. // This is the next line of the exception handler.
10. // This is the last line of the exception handler.
11. }
12. catch(MySecondException) {
13. // Put code here that handles this exception
14. }

236 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Handling Exceptions (Exam Objectives 2.3 and 2.4) 237

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

15.
16. // Some other unguarded (normal, non-risky) code begins here

In this pseudocode example, lines 2 through 5 constitute the guarded region that
is governed by the try clause. Line seven is an exception handler for an exception
of type MyFirstException. Line 12 is an exception handler for an exception of type
MySecondException. Notice that the catch blocks immediately follow the try
block. This is a requirement; if you have one or more catch blocks, they must
immediately follow the try block. Additionally, the catch blocks must all follow
each other, without any other statements or blocks in between. Also, the order in which
the catch blocks appear matters, as we’ll see a little later.

Execution starts at line 2. If the program executes all the way to line 5 with no
exceptions being thrown, execution will transfer to line 15 and continue downward.
However, if at any time in lines 2 through 5 (the try block) an exception is thrown
of type MyFirstException, execution will immediately transfer to line 8. Lines 8
through 10 will then be executed so that the entire catch block runs, and then
execution will transfer to line 15 and continue.

Note that if an exception occurred on, say, line 3 of the try block, the rest of the
lines in the try block (3 through 5) would never be executed. Once control jumps
to the catch block, it never returns to complete the balance of the try block.
This is exactly what you want, though. Imagine your code looks something like this
pseudocode:

try {
getTheFileFromOverNetwork
readFromTheFileAndPopulateTable

}
catch(CantGetFileFromNetwork) {

useLocalFileInstead
}

The preceding pseudocode demonstrates how you typically work with exceptions.
Code that’s dependent on a risky operation (as populating a table with file data is
dependent on getting the file from the network) is grouped into a try block in such
a way that if, say, the first operation fails, you won’t continue trying to run other code
that’s guaranteed to also fail. In the pseudocode example, you won’t be able to read
from the file if you can’t get the file off the network in the first place.

One of the benefits of using exception handling is that code to handle any
particular exception that may occur in the governed region needs to be written only

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

238 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

once. Returning to our earlier code example, there may be three different places in
our try block that can generate a MyFirstException, but wherever it occurs it will
be handled by the same catch block (on line 7). We’ll discuss more benefits of
exception handling near the end of this chapter.

Using finally
Try and catch provide a terrific mechanism for trapping and handling exceptions,
but we are left with the problem of how to clean up after ourselves. Because execution
transfers out of the try block as soon as an exception is thrown, we can’t put our
cleanup code at the bottom of the try block and expect it to be executed if an
exception occurs. Almost as bad an idea would be placing our cleanup code in the
catch blocks.

Exception handlers are a poor place to clean up after the code in the try block
because each handler then requires its own copy of the cleanup code. If, for example,
you allocated a network socket or opened a file somewhere in the guarded region,
each exception handler would have to close the file or release the socket. That would
make it too easy to forget to do cleanup, and also lead to a lot of redundant code. To
address this problem, Java offers the finally block.

A finally block encloses code that is always executed at some point after the
try block, whether an exception was thrown or not. Even if there is a return statement
in the try block, the finally block executes right after the return statement! This
is the right place to close your files, release your network sockets, and perform any
other cleanup your code requires. If the try block executes with no exceptions, the
finally block is executed immediately after the try block completes. If there
was an exception thrown, the finally block executes immediately after the proper
catch block completes.

Let’s look at another pseudocode example:

1: try {
2: // This is the first line of the "guarded region".
3: }
4: catch(MyFirstException) {
5: // Put code here that handles this error.
6: }
7: catch(MySecondException) {
8: // Put code here that handles this error.
9: }
10: finally {
11: // Put code here to release any resource we
12: // allocated in the try clause.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13: }
14:
15: // More code here

As before, execution starts at the first line of the try block, line 2. If there are no
exceptions thrown in the try block, execution transfers to line 11, the first line of
the finally block. On the other hand, if a MySecondException is thrown while
the code in the try block is executing, execution transfers to the first line of that
exception handler, line 8 in the catch clause. After all the code in the catch
clause is executed, the program moves to line 11, the first line of the finally clause.
Repeat after me: finally always runs ! OK, we’ll have to refine that a little, but for now,
start burning in the idea that finally always runs. If an exception is thrown, finally runs.
If an exception is not thrown, finally runs. If the exception is caught, finally runs. If
the exception is not caught, finally runs. Later we’ll look at the few scenarios in which
finally might not run or complete.
finally clauses are not required. If you don’t write one, your code will compile

and run just fine. In fact, if you have no resources to clean up after your try block
completes, you probably don’t need a finally clause. Also, because the compiler
doesn’t even require catch clauses, sometimes you’ll run across code that has a
try block immediately followed by a finally block. Such code is useful when
the exception is going to be passed back to the calling method, as explained in the
next section. Using a finally block allows the cleanup code to execute even when
there isn’t a catch clause.

The following legal code demonstrates a try with a finally but no catch:

try {
// do stuff

} finally {
//clean up

}

The following legal code demonstrates a try, catch, and finally:

try {
// do stuff

} catch (SomeException ex) {
// do exception handling

} finally {
// clean up

}

Handling Exceptions (Exam Objectives 2.3 and 2.4) 239

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

240 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

The following illegal code demonstrates a try without catch or finally:

try {
// do stuff

}
// need a catch or finally here
System.out.println("out of try block");

The following illegal code demonstrates a misplaced catch block:

try {
// do stuff

}
// can't have code between try/catch
System.out.println("out of try block");
catch(Exception ex) { }

It is illegal to use a try clause without either a catch clause or a finally
clause. A try clause by itself will result in a compiler error. Any catch
clauses must immediately follow the try block. Any finally clauses must
immediately follow the last catch clause. It is legal to omit either the catch
clause or the finally clause, but not both.

You can’t sneak any code in between the try and catch (or try and
finally) blocks. The following won’t compile:

try {

// do stuff

}

System.out.print(“below the try”); //Illegal!

catch(Exception ex) { }

Propagating Uncaught Exceptions
Why aren’t catch clauses required? What happens to an exception that’s thrown
in a try block when there is no catch clause waiting for it? Actually, there’s no
requirement that you code a catch clause for every possible exception that could
be thrown from the corresponding try block. In fact, it’s doubtful that you could
accomplish such a feat! If a method doesn’t provide a catch clause for a particular
exception, that method is said to be “ducking” the exception (or “passing the buck”).

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:09:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

So what happens to a ducked exception? Before we discuss that, we need to briefly
review the concept of the call stack. Most languages have the concept of a method
stack or a call stack. Simply put, the call stack is the chain of methods that your
program executes to get to the current method. If your program starts in method
main() and main() calls method a(), which calls method b() that in turn
calls method c(), the call stack consists of the following:

c
b
a
main

A stack can be represented as growing upward (although it can also be visualized
as growing downward). As you can see, the last method called is at the top of the
stack, while the first calling method is at the bottom. If you could print out the state
of the stack at any given time, you would produce a stack trace. The method at the
very top of the stack trace would be the method you were currently executing. If
we move back down the call stack, we’re moving from the current method to the
previously called method. Figure 4-1 illustrates a way to think about how the call
stack in Java works.

Now let’s examine what happens to ducked exceptions. Imagine a building, say,
five stories high, and at each floor there is a deck or balcony. Now imagine that on
each deck, one person is standing holding a baseball mitt. Exceptions are like balls
dropped from person to person, starting from the roof. An exception is first thrown

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Handling Exceptions (Exam Objectives 2.3 and 2.4) 241

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

FIGURE 4-1

The Java method
call stack

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

242 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

from the top of the stack (in other words, the person on the roof), and if it isn’t
caught by the same person who threw it (the person on the roof), it drops down
the call stack to the previous method, which is the person standing on the deck one
floor down. If not caught there, by the person one floor down, the exception/ball
again drops down to the previous method (person on the next floor down), and so
on until they are caught or until they reach the very bottom of the call stack. This is
called exception propagation.

If they reach the bottom of the call stack, it’s like reaching the bottom of a very
long drop; the ball explodes, and so does your program. An exception that’s never
caught will cause your application to stop running. A description (if one is available)
of the exception will be displayed, and the call stack will be “dumped.” This helps
you debug your application by telling you what exception was thrown, from what
method it was thrown, and what the stack looked like at the time.

You can keep throwing an exception down through the methods on the stack.
But what about when you get to the main() method at the bottom? You can
throw the exception out of main() as well. This results in the Java virtual
machine (JVM) halting, and the stack trace will be printed to the output.
The following code throws an exception,

class TestEx {

public static void main (String [] args) {

doStuff();

}

static void doStuff() {

doMoreStuff();

}

static void doMoreStuff() {

int x = 5/0; // Can’t divide by zero! ArithmeticException is thrown here

}

}

which prints out the stack trace,

%java TestEx

Exception in thread “main” java.lang.ArithmeticException: / by zero

at TestEx.doMoreStuff(TestEx.java:10)

at TestEx.doStuff(TestEx.java:7)

at TestEx.main(TestEx.java:3)

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Handling Exceptions (Exam Objectives 2.3 and 2.4) 243

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

EXERCISE 4-3

Propagating and Catching an Exception
So far you have only seen exceptions displayed in this chapter with pseudocode. In
this exercise we attempt to create two methods that deal with exceptions. One of the
methods is the main() method, which will call another method. If an exception is
thrown in the other method, it must deal with it. A finally statement will be
included to indicate it is all done. The method it will call will be named reverse(),
and it will reverse the order of the characters in the string. If the string contains no
characters, it will propagate an exception up to the main() method.

1. Create an enclosing class called Propagate and a main() method, which will
remain empty for now.

2. Create a method called reverse(). It takes an argument of a string and
returns a String.

3. Check if the String has a length of 0 by using the length() method. If the
length is 0, it will throw a new exception.

4. Now let’s include the code to reverse the order of the String. Because this
isn’t the main topic of this chapter, the reversal code has been provided, but
feel free to try it on your own.

String reverseStr = "";
for(int i=s.length()-1;i>=0;--i) {

reverseStr += s.charAt(i);
}
return reverseStr;

5. Now in the main() method we will attempt to call this method and deal
with any potential exceptions. Additionally, we will include a finally
statement that tells us it has finished.

Defining Exceptions
We have been discussing exceptions as a concept. We know that they are thrown
when a problem of some type happens, and we know what effect they have on the

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

flow of our program. In this section we will develop the concepts further and use
exceptions in functional Java code. Earlier we said that an exception is an occurrence
that alters the normal program flow. But because this is Java, anything that’s not a
primitive must be…an object. Exceptions are no, well, exception to this rule. Every
exception is as an instance of a class that has class Exception in its inheritance hierarchy.
In other words, exceptions are always some subclass of java.lang.Exception.

When an exception is thrown, an object of a particular Exception subtype is
instantiated and handed to the exception handler as an argument to the catch clause.
An actual catch clause looks like this:

try {
// some code here

}
catch (ArrayIndexOutOfBoundsException e) {

e.printStackTrace();
}

In this example, e is an instance of a class with the tersely named
ArrayIndexOutOfBoundsException. As with any other object, you
can call its methods.

Exception Hierarchy
All exception classes are subtypes of class Exception. This class derives from the class
Throwable (which derives from the class Object). Figure 4-2 shows the hierarchy for
the exception classes.

As you can see, there are two subclasses that derive from Throwable: Exception
and Error. Classes that derive from Error represent unusual situations that are not
caused by program errors or by anything that would normally happen during program
execution, such as the JVM running out of memory. Generally, your application
won’t be able to recover from an Error, so you’re not required to handle them. If
your code does not handle them (and it usually won’t), it will still compile with no
trouble. Although often thought of as exceptional conditions, Errors are technically
not exceptions because they do not derive from class Exception.

In general, an exception represents something that happens not as a result of a
programming error, but rather because some resource is not available or some other
condition required for correct execution is not present. For example, if your application
is supposed to communicate with another application or computer that is not

244 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

answering, this is an exception that is not caused by a bug. Figure 4-2 also shows a
subtype of Exception called RuntimeException. These exceptions are a special case
because they actually do indicate program errors. They can also represent rare, difficult
to handle exceptional conditions. Runtime exceptions are discussed in greater detail
later in this chapter.

Java provides many exception classes, most of which have quite descriptive names.
There are two ways to get information about an exception. The first is from the type
of the exception itself. The next is from information that you can get from the
exception object. Class Throwable (at the top of the inheritance tree for exceptions)
provides its descendants with some methods that are useful in exception handlers.
One of these is printStackTrace(). As expected, if you call an exception
object’s printStackTrace() method, as in the earlier example, a stack trace
from where the exception occurred will be printed.

We discussed that a call stack builds upward with the most recently called method
at the top. You will notice that the printStackTrace() method prints the most
recently entered method first and continues down, printing the name of each method
as it works its way down the call stack (this is called unwinding the stack) from the top.

Handling Exceptions (Exam Objectives 2.3 and 2.4) 245

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

FIGURE 4-2

Exception class
hierarchy

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

246 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

For the exam, it is not necessary to know any of the methods contained in the
Throwable classes, including Exception and Error. You are expected to know
that Exception, Error, RuntimeException, and Throwable types can all be
thrown using the throws keyword, and can all be caught (although you rarely
will catch anything other than Exception subtypes).

Handling an Entire Class Hierarchy of Exceptions
We’ve discussed that the catch keyword allows you to specify a particular type of
exception to catch. You can actually catch more than one type of exception in a single
catch clause. If the exception class that you specify in the catch clause has no
subclasses, then only the specified class of exception will be caught. However, if the
class specified in the catch clause does have subclasses, any exception object that
subclasses the specified class will be caught as well.

For example, class IndexOutOfBoundsException has two subclasses,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
You may want to write one exception handler that deals with exceptions produced
by either type of boundary error, but you might not be concerned with which
exception you actually have. In this case, you could write a catch clause like
the following:

try {
// Some code here that can throw a boundary exception

}
catch (IndexOutOfBoundsException e) {

e.printStackTrace();
}

If any code in the try block throws ArrayIndexOutOfBoundsException or
StringIndexOutOfBoundsException, the exception will be caught and handled. This
can be convenient, but it should be used sparingly. By specifying an exception class’
superclass in your catch clause, you’re discarding valuable information about the
exception. You can, of course, find out exactly what exception class you have, but if
you’re going to do that, you’re better off writing a separate catch clause for each
exception type of interest.

Resist the temptation to write a single catchall exception handler such as the
following:

try {

// some code

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

}

catch (Exception e) {

e.printStackTrace();

}

This code will catch every exception generated. Of course, no single exception
handler can properly handle every exception, and programming in this way
defeats the design objective. Exception handlers that trap many errors at
once will probably reduce the reliability of your program because it’s likely
that an exception will be caught that the handler does not know how to handle.

Exception Matching
If you have an exception hierarchy composed of a superclass exception and a number
of subtypes, and you’re interested in handling one of the subtypes in a special way
but want to handle all the rest together, you need write only two catch clauses.

When an exception is thrown, Java will try to find a catch clause for the
exception type. If it doesn’t find one, it will search for a handler for a supertype of
the exception. If it does not find a catch clause that matches a supertype for the
exception, then the exception is propagated down the call stack. This process is
called exception matching.

Let’s look at an example:

1: import java.io.*;
2: public class ReadData {
3: public static void main(String args[]) {
4: try {
5: RandomAccessFile raf =
6: new RandomAccessFile("myfile.txt", "r");
7: byte b[] = new byte[1000];
8: raf.readFully(b, 0, 1000);
9: }
10: catch(FileNotFoundException e) {
11: System.err.println("File not found");
12: System.err.println(e.getMessage());
13: e.printStackTrace();
14: }
15: catch(IOException e) {
16: System.err.println("IO Error");
17: System.err.println(e.toString());
18: e.printStackTrace();
19: }

Handling Exceptions (Exam Objectives 2.3 and 2.4) 247

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

20: }
21: }

This short program attempts to open a file and to read some data from it. Opening
and reading files can generate many exceptions, most of which are some type of
IOException. Imagine that in this program we’re interested in knowing only whether
the exact exception is a FileNotFoundException. Otherwise, we don’t care exactly
what the problem is.

FileNotFoundException is a subclass of IOException. Therefore, we could handle
it in the catch clause that catches all subtypes of IOException, but then we would
have to test the exception to determine whether it was a FileNotFoundException.
Instead, we coded a special exception handler for the FileNotFoundException and
a separate exception handler for all other IOException subtypes.

If this code generates a FileNotFoundException, it will be handled by the
catch clause that begins at line 10. If it generates another IOException—perhaps
EOFException, which is a subclass of IOException—it will be handled by the catch
clause that begins at line 15. If some other exception is generated, such as a runtime
exception of some type, neither catch clause will be executed and the exception
will be propagated down the call stack.

Notice that the catch clause for the FileNotFoundException was placed above
the handler for the IOException. This is really important! If we do it the opposite
way, the program will not compile. The handlers for the most specific exceptions must
always be placed above those for more general exceptions. The following will not compile:

try {
// do risky IO things

} catch (IOException e) {
// handle general IOExceptions

} catch (FileNotFoundException ex) {
// handle just FileNotFoundException

}

You’ll get the following compiler error:

TestEx.java:15: exception java.io.FileNotFoundException has
already been caught
} catch (FileNotFoundException ex) {

^

If you think of the people with baseball mitts, imagine that the most general mitts
are the largest, and can thus catch many different kinds of balls. An IOException

248 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mitt is large enough and flexible enough to catch any type of IOException. So if the
person on the fifth floor (say, Fred) has a big ‘ol IOException mitt, he can’t help but
catch a FileNotFoundException ball with it. And if the guy (say, Jimmy) on the
second floor is holding a FileNotFoundException mitt, that FileNotFoundException
ball will never get to him, since it will always be stopped by Fred on the fifth floor,
standing there with his big-enough-for-any-IOException mitt.

So what do you do with exceptions that are siblings in the class hierarchy? If one
Exception class is not a subtype or supertype of the other, then the order in which
the catch clauses are placed doesn’t matter.

Exception Declaration and the Public Interface
So, how do we know that some method throws an exception that we have to catch?
Just as a method must specify what type and how many arguments it accepts and
what is returned, the exceptions that a method can throw must be declared (unless the
exceptions are subclasses of RuntimeException). The list of thrown exceptions
is part of a method’s public interface. The throws keyword is used as follows to
list the exceptions that a method can throw:

void myFunction() throws MyException1, MyException2 {
// code for the method here

}

This method has a void return type, accepts no arguments, and declares that it
throws two exceptions of type MyException1 and MyException2. (Just because
the method declares that it throws an exception doesn’t mean it always will. It just
tells the world that it might.)

Suppose your method doesn’t directly throw an exception, but calls a method that
does. You can choose not to handle the exception yourself and instead just declare it,
as though it were your method that actually throws the exception. If you do declare
the exception that your method might get from another method, and you don’t
provide a try/catch for it, then the method will propagate back to the method
that called your method, and either be caught there or continue on to be handled by
a method further down the stack.

Any method that might throw an exception (unless it’s a subclass of RuntimeException)
must declare the exception. That includes methods that aren’t actually throwing it
directly, but are “ducking” and letting the exception pass down to the next method
in the stack. If you “duck” an exception, it is just as if you were the one actually

Handling Exceptions (Exam Objectives 2.3 and 2.4) 249

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

250 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

throwing the exception. RuntimeException subclasses are exempt, so the compiler
won’t check to see if you’ve declared them. But all non-RuntimeExceptions are
considered “checked” exceptions, because the compiler checks to be certain you’ve
acknowledged that “bad things could happen here.”

Remember this: Each method must either handle all checked exceptions by
supplying a catch clause or list each unhandled checked exception as a thrown
exception. This rule is referred to as Java’s handle or declare requirement. (Sometimes
called catch or declare.)

Look for code that invokes a method declaring an exception, where the calling
method doesn’t handle or declare the checked exception. The following code
has two big problems that the compiler will prevent:

void doStuff() {

doMore();

}

void doMore() {

throw new IOException();

}

First, the doMore() method throws a checked exception, but does not declare
it! But suppose we fix the doMore() method as follows:

void doMore() throws IOException { … }

The doStuff() method is still in trouble because it, too, must declare the
IOException, unless it handles it by providing a try/catch, with a catch

clause that can take an IOException.

Again, some exceptions are exempt from this rule. An object of type
RuntimeException may be thrown from any method without being specified as
part of the method’s public interface (and a handler need not be present). And
even if a method does declare a RuntimeException, the calling method is under
no obligation to handle or declare it. RuntimeException, Error, and all of their
subtypes are unchecked exceptions and unchecked exceptions do not have to be
specified or handled.

Here is an example:

import java.io.*;
class Test {

public int myMethod1() throws EOFException {
return myMethod2();

}
public int myMethod2() throws EOFException {

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Some code that actually throws the exception goes here
return 1;

}
}

Let’s look at myMethod1(). Because EOFException subclasses IOException
and IOException subclasses Exception, it is a checked exception and must be declared
as an exception that may be thrown by this method. But where will the exception
actually come from? The public interface for method myMethod2() called here
declares that an exception of this type can be thrown. Whether that method actually
throws the exception itself or calls another method that throws it is unimportant to
us; we simply know that we have to either catch the exception or declare that we
throw it. The method myMethod1() does not catch the exception, so it declares
that it throws it.

Now let’s look at another legal example, myMethod3().

public void myMethod3() {
// Some code that throws a NullPointerException goes here

}

According to the comment, this method can throw a NullPointerException.
Because RuntimeException is the immediate superclass of NullPointerException, it
is an unchecked exception and need not be declared. We can see that myMethod3()
does not declare any exceptions.

Runtime exceptions are referred to as unchecked exceptions. All other exceptions,
meaning all those that do not derive from java.lang.RuntimeException, are checked
exceptions. A checked exception must be caught somewhere in your code. If you invoke
a method that throws a checked exception but you don’t catch the checked exception
somewhere, your code will not compile. That’s why they’re called checked exceptions;
the compiler checks to make sure that they’re handled or declared. A number of the
methods in the Java 2 Standard Edition libraries throw checked exceptions, so you
will often write exception handlers to cope with exceptions generated by methods
you didn’t write.

You can also throw an exception yourself, and that exception can be either an
existing exception from the Java API or one of your own. To create your own
exception, you simply subclass Exception (or one of its subclasses) as follows:

class MyException extends Exception { }

Handling Exceptions (Exam Objectives 2.3 and 2.4) 251

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

252 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

And if you throw the exception, the compiler will guarantee that you declare it
as follows:

class TestEx {
void doStuff() {
throw new MyException(); // Throw a checked exception

}
}

The preceding code upsets the compiler:

TestEx.java:6: unreported exception MyException; must be caught or
declared to be thrown
throw new MyException();
^

When an object of a subtype of Exception is thrown, it must be handled
or declared. These objects are called checked exceptions, and include all
exceptions except those that are subtypes of RuntimeException, which
are unchecked exceptions. Be ready to spot methods that don’t follow the
handle or declare rule, such as

class MyException extends Exception {

void someMethod () {

doStuff();

}

void doStuff() throws MyException {

try {

throw new MyException();

}

catch(MyException me) {

throw me;

}

}

You need to recognize that this code won’t compile. If you try, you’ll get

TestEx.java:8: unreported exception MyException; must be caught or

declared to be thrown

doStuff();

^

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Handling Exceptions (Exam Objectives 2.3 and 2.4) 253

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

The exam objectives specifically state that you need to know how an Error
compares with checked and unchecked exceptions. Objects of type Error are
not Exception objects, although they do represent exceptional conditions.
Both Exception and Error share a common superclass, Throwable, thus both
can be thrown using the throws keyword. When an Error or a subclass of
Error is thrown, it’s unchecked. You are not required to catch Error objects or Error
subtypes. You can also throw an Error yourself (although you probably won’t
ever want to) and you can catch one, but again, you probably won’t. What, for
example, would you actually do if you got an OutOfMemoryError? It’s not
like you can tell the garbage collector to run; you can bet the JVM fought
desperately to save itself (and reclaimed all the memory it could) by the time
you got the error. In other words, don’t expect the JVM at that point to say,
“Run the garbage collector? Oh, thanks so much for telling me. That just never
occurred to me. Sure, I’ll get right on it…” Even better, what would you do if
a VirtualMachineError arose? Your program is toast by the time you’d catch
the Error, so there’s really no point in trying to catch one of these babies. Just
remember, though, that you can! The following compiles just fine:

class TestEx {

public static void main (String [] args) {

badMethod();

}

static void badMethod() { // No need to declare an Error

doStuff()

}

static void doStuff() { //No need to declare an Error

try {

throw new Error();

}

catch(Error me) {

throw me; // We catch it, but then rethrow it

}

}

}

If we were throwing a checked exception rather than Error, then the
doStuff() method would need to declare the exception. But remember,
since Error is not a subtype of Exception, it doesn’t need to be declared.
You’re free to declare it if you like, but the compiler just doesn’t care one
way or another when or how the Error is thrown, or by whom.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because Java has checked exceptions, it’s commonly said that Java forces
developers to handle errors. Yes, Java forces us to write exception handlers
for each exception that can occur during normal operation, but it’s up to us to
make the exception handlers actually do something useful. We know software
managers who melt down when they see a programmer write

try {

callBadMethod();

} catch (Exception ex) { }

Notice anything missing? Don’t “eat” the exception by catching it without
actually handling it. You won’t even be able to tell that the exception occurred,
because you’ll never see the stack trace.

Rethrowing the Same Exception
Just as you can throw a new exception from a catch clause, you can also throw the
same exception you just caught. Here’s a catch clause that does this:

catch(IOException e) {
// Do things, then if you decide you can't handle it…

throw e;
}

All other catch clauses associated with the same try are ignored, and the exception
is thrown back to the calling method (the next method down the call stack). If you
throw a checked exception from a catch clause, you must also declare that exception!
In other words, you must handle and declare, as opposed to handle or declare. The
following example is illegal:

public void doStuff() {
try {

// risky IO things
} catch(IOException ex) {

// can't handle it
throw ex; // Can't throw it unless you declare it

}
}

In the preceding code, the doStuff() method is clearly able to throw a checked
exception—in this case an IOException—so the compiler says, “Well, that’s just

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

254 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

peachy that you have a try/catch in there, but it’s not good enough. If you might
rethrow the IOException you catch, then you must declare it!”

EXERCISE 4-4

Creating an Exception
In this exercise we attempt to create a custom exception. We won’t put in any new
methods (it will have only those inherited from Exception), and because it extends
Exception, the compiler considers it a checked exception. The goal of the program
is to check to see if a command-line argument, representing a particular food (as
a string), is considered bad or OK.

1. Let’s first create our exception. We will call it BadFoodException. This
exception will be thrown when a bad food is encountered.

2. Create an enclosing class called MyException and a main() method,
which will remain empty for now.

3. Create a method called checkFood(). It takes a String argument and
throws our exception if it doesn’t like the food it was given. Otherwise, it
tells us it likes the food. You can add any foods you aren’t particularly fond
of to the list.

4. Now in the main() method, you’ll get the command-line argument out of
the String array, and then pass that String on to the checkFood() method.
Because it’s a checked exception, the checkFood() method must declare
it, and the main() method must handle it (using a try/catch). Do not
have main() declare the method, because if main() ducks the exception,
who else is back there to catch it?

As useful as exception handling is, it’s still up to the developer to make proper use
of it. Exception handling makes organizing our code and signaling problems easy,
but the exception handlers still have to be written. You’ll find that even the most
complex situations can be handled, and keep your code reusable, readable, and
maintainable.

Handling Exceptions (Exam Objectives 2.3 and 2.4) 255

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

256 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

CERTIFICATION OBJECTIVE

Working with the Assertion Mechanism
(Exam Objectives 2.4 and 2.5)

Write code that makes proper use of assertions, and distinguish appropriate from
inappropriate uses of assertions.

Identify correct statements about the assertion mechanism.

You know you’re not supposed to make assumptions, but you can’t help it when
you’re writing code. You put them in comments:

if (x > 2 && y) {
// do something

} else if (x < 2 || y) {
// do something

} else {
// x must be 2
// do something else

}

You write print statements with them:

while (true) {
if (x > 2) {

break;
}
System.out.print(“If we got here something went horribly

wrong”);
}

Added to the Java language beginning with version 1.4, assertions let you test your
assumptions during development, without the expense (in both your time and
program overhead) of writing exception handlers for exceptions that you assume
will never happen once the program is out of development and fully deployed.

Starting with exam 310-035 (version 1.4 of the Sun Certified Java Programmer
exam), you’re expected to know the basics of how assertions (in Java) work, including
how to enable them, how to use them, and how not to use them. Because both
objectives test the same concepts, the things you need to know for both are covered
together in this section.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Assertions Overview
Suppose you assume that a number passed into a method (say, methodA()) will
never be negative. While testing and debugging, you want to validate your assumption,
but you don’t want to have to strip out print statements, runtime exception handlers,
or if/else tests when you’re done with development. But leaving any of those in is,
at the least, a performance hit. Assertions to the rescue! Check out the following
preassertions code:

private void methodA(int num) {
if (num >= 0) {

// do stuff
} else { // num must be < 0
// This code will never be reached!
System.out.println("Yikes! num is a negative number! " + num);

}
useNum(num + x);

}

Because you’re so certain of your assumption, you don’t want to take the time (or
program performance hit) to write exception-handling code. And at runtime, you
don’t want the if/else in there either because if you do reach the else condition, it
means your earlier logic (whatever was running prior to this method being called) is
flawed. Assertions let you test your assumptions during development, but the assertion
code—in effect—evaporates when the program is deployed, leaving behind no
overhead or debugging code to track down and remove. Let’s rewrite methodA()
to validate that the argument was not negative:

private void methodA(int num) {
assert (num>=0); // throws an AssertionError

// if this test isn't true
useNum(num + x);

}

Not only do assertions let your code stay cleaner and smaller, but because assertions
are inactive unless specifically “turned on” (enabled), the code will run as though it
were written like this:

private void methodA(int num) {
useNum(num + x); // we've tested this;

// we now know we're good here
}

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 257

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

258 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Assertions work quite simply. You always assert that something is true. If it is, no
problem. Code keeps running. But if your assertion turns out to be wrong (false),
then a stop-the-world AssertionError is thrown (that you should never, ever handle!)
right then and there, so you can fix whatever logic flaw led to the problem.

Assertions come in two flavors: simple and really simple, as follows:

Really Simple

private void doStuff() {
assert (y > x);
// more code assuming y is greater than x

}

Simple

private void doStuff() {
assert (y > x): "y is " + y " " x is " + x;
// more code assuming y is greater than x

}

The difference between them is that the simple version adds a second expression,
separated from the first (boolean expression) by a colon, that adds a little more
information to the stack trace. Both versions throw an immediate AssertionError,
but the simple version gives you a little more debugging help while the really simple
version simply tells you that your assumption was false.

Assertions are typically enabled when an application is being tested and
debugged, but disabled when the application is deployed. The assertions are
still in the code, although ignored by the JVM, so if you do have a deployed
application that starts misbehaving, you can always choose to enable
assertions in the field for additional testing.

Assertion Expression Rules
Assertions can have either one or two expressions, depending on whether you’re
using the simple or really simple flavor. The first expression must always result in a
boolean value! Follow the same rules you use for if and while tests. The whole
point is to assert aTest, which means you’re asserting that aTest is true. If it is true,
no problem. If it’s not true, however, then your assumption was wrong and you get
an AssertionError.

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:09:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The second expression, used only with the simple version of an assert statement,
can be anything that results in a value. Remember, the second expression is used to
generate a String message that displays in the stack trace to give you a little more
debugging information. It works much like System.out.println() in that you
can pass it a primitive or an object, and it will convert it into a String representation.
It must resolve to a value!

Table 4-3 lists legal and illegal expressions for both parts of an assert statement.
Remember, expression2 is used only with the simple assert statement, where the
second expression exists solely to give you a little more debugging detail.

If you see the word “expression” in a question about assertions, and the
question doesn’t specify whether it means expression1 (the boolean test)
or expression2 (the value to print in the stack trace), then always assume
the word expression refers to expression1, the boolean test. For example,
if we asked you the following question,

”An assert expression must result in a boolean value, true or false?”,

assume that the word expression refers to expression1 of an assert, so the
question statement is correct. If the statement were referring to expression2,
however, the statement would not be correct, since expression2 can have
a result of any value, not just a boolean.

Enabling Assertions
If you want to use assertions, you have to think first about how to compile with
assertions in your code, and then about how to run with assertions turned on. Both
require version 1.4 or greater, and that brings us to the first issue: how to compile
with assertions in your code.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 259

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Expression1 Expression2

Legal Illegal Legal Illegal

assert (x ==2) assert (x = 2) : “x is “ + x : void

boolean z = true;
assert (z)

int z = 0;
assert (z)

public int go() { return 1; }
: go();

public void go() { }
: go();

assert false assert 1 : new Foo(); : Foo f;

TABLE 4-3 Legal and Illegal assert Expressions

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:09:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

260 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Compiling with Assertions
Prior to version 1.4, you might very well have written code like this:

int assert = getInitialValue();
if (assert == getActualResult()) {

// do something
}

Notice that in the preceding code, assert is used as an identifier. No problem
prior to 1.4. But remember that you cannot use a keyword/reserved word as an
identifier, and beginning with version 1.4, assert is now a keyword! The bottom
line is

You can use “assert” as a keyword or as an identifier, but not both.

You get a choice whenever you compile with version 1.4, as to whether you’re
compiling “assertion aware” code or code written in the old way, where assert is
not a reserved word. Let’s look at both. You must know this: in version 1.4, assertions
are disabled by default! If you don’t specifically “turn them on” at compile time, then assert
will not be recognized as a keyword, because the compiler will act as a version 1.3
compiler, with respect to the word “assert” (in which case your code can happily use
assert as an identifier).

Compiling Assertion-Aware Code If you’re using assert as a keyword
(in other words, you’re actually trying to assert something in your code), then you
must explicitly enable assertion-awareness at compile time, as follows:

javac -source 1.4 com/geeksanonymous/TestClass

You can read that as “compile the class TestClass, in the directory com/geeksanonymous,
and do it in the 1.4 way, where assert is a recognized keyword.”

Compiling with Code That Uses Assert as an Identifier If you don’t use
the -source 1.4 flag, then the default behavior is as though you said to the
compiler, “Compile this code as if you didn’t known anything about assert as a
keyword, so that I may use the word assert as an identifier for a method or variable.”
The following is what you get by default:

javac -source 1.3 com/geeksanonymous/TestClass

But since that’s the default behavior, it’s redundant to actually type -source 1.3.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 261

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Running with Assertions
Here’s where it gets cool. Once you’ve written your assertion-aware code (in other
words, code that uses assert as a keyword, to actually perform assertions at runtime),
you can choose to enable or disable them! Remember, assertions are disabled by default.

Enabling Assertions at Runtime You enable assertions at runtime with

java -ea com.geeksanonymous.TestClass

or

java -enableassertions com.geeksanonymous.TestClass

The preceding command-line switches tell the JVM to run with assertions enabled.

Disabling Assertions at Runtime You must also know the command-line
switches for disabling assertions,

java -da com.geeksanonymous.TestClass

or

java -disableassertions com.geeksanonymous.TestClass

Because assertions are disabled by default, using the disable switches might seem
unnecessary. Indeed, using the switches the way we do in the preceding example just
gives you the default behavior (in other words, you get the same result regardless of
whether you use the disabling switches). But…you can also selectively enable and
disable assertions in such a way that they’re enabled for some classes and/or packages,
and disabled for others, while a particular program is running.

Selective Enabling and Disabling The command-line switches to enable and
disable assertions can be used in various ways:

■ With no arguments (as in the preceding examples) Enables or disables
assertions in all classes, except for the system classes.

■ With a package name Enables or disables assertions in the package specified,
and any packages below this package in the same directory hierarchy (more
on that in a moment).

■ With a class name Enables or disables assertions in the class specified.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

262 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

You can combine switches to, say, disable assertions in a single class, but keep
them enabled for all others, as follows:

java -ea -da:com.geeksanonymous.Foo

The preceding command line tells the JVM to enable assertions in general, but
disable them in the class com.geeksanonymous.Foo. You can do the same
selectivity for a package as follows:

java -ea -da:com.geeksanonymous...

The preceding command line tells the JVM to enable assertions in general, but disable
them in the package com.geeksanonymous, and all of its subpackages! You may not be
familiar with the term subpackages, since there wasn’t much use of that term prior to
assertions. A subpackage is any package in a subdirectory of the named package. For
example, look at the following directory tree:

com
|_geeksanonymous

|_Foo
|_Bar
|_twelvesteps

|_StepOne
|_StepTwo

This tree lists three directories,

com
geeksanonymous
twelvesteps

and four classes:

com.geeksanonymous.Foo
com.geeksanonymous.Bar
com.geeksanonymous.twelvesteps.StepOne
com.geeksanonymous.twelvesteps.StepTwo

The subpackage of com.geeksanonymous is the twelvesteps package. Remember that
in Java, the com.geeksanonymous.twelvesteps package is treated as a completely distinct
package that has no relationship with the packages above it (in this example, the
com.geeksanonymous package), except they just happen to share a couple of directories.
Table 4-4 lists examples of command-line switches for enabling and disabling assertions.

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Assertions Appropriately
Not all legal uses of assertions are considered appropriate. As with so much of Java, you
can abuse the intended use for assertions, despite the best efforts of Sun’s Java engineers
to discourage you. For example, you’re never supposed to handle an assertion failure.
That means don’t catch it with a catch clause and attempt to recover. Legally,
however, AssertionError is a subclass of Throwable, so it can be caught. But just
don’t do it! If you’re going to try to recover from something, it should be an exception.
To discourage you from trying to substitute an assertion for an exception, the
AssertionError doesn’t provide access to the object that generated it. All you get is
the String message.

So who gets to decide what is and is not appropriate? Sun. Both the exam and this
section use Sun’s “official” assertion documentation to determine appropriate and
inappropriate uses.

If you see the word “appropriate” on the exam, do not mistake that for
“legal.” Appropriate always refers to the way in which something is supposed
to be used, according to either the developers of the mechanism or best
practices officially embraced by Sun. If you see the word “correct” in the
context of assertions, as in, “Line 3 is a correct use of assertions,” you should
also assume that correct is referring to how assertions should be used rather
than how they legally could be used.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 263

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Command-Line Example What It Means

java -ea
java -enableassertions

Enable assertions

java -da
java -disableassertions

Disable assertions (the default behavior of version 1.4)

java -ea:com.foo.Bar Enable assertions in class com.foo.Bar

java -ea:com.foo... Enable assertions in package com.foo, and any of its subpackages

java -ea -dsa Enable assertions in general, but disable assertions in system classes

java -ea -da:com.foo... Enable assertions in general, but disable assertions in package
com.foo and any of its subpackages

TABLE 4-4 Assertion Command-Line Switches

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:10:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Do not use assertions to validate arguments to a public method.
The following is an inappropriate use of assertions:

public void doStuff(int x) {
assert (x > 0);
// do things with x

}

A public method might be called from code that you don’t control (or have ever
seen). Because public methods are part of your exposed interface to the outside
world, you’re supposed to guarantee that any constraints on the arguments will
be enforced by the method itself. But since assertions aren’t guaranteed to actually
run (they’re typically disabled in a deployed application), the enforcement won’t
happen if assertions aren’t enabled. You don’t want publicly accessible code that
works only conditionally, depending on whether assertions are enabled or disabled.

If you need to validate public method arguments, you’ll probably use exceptions
to throw, say, an IllegalArgumentException if the values passed to the public method
are invalid.

Do use assertions to validate arguments to a private method.
If you write a private method, you almost certainly wrote (or control) any code that
calls it. When you assume that the logic in code calling your private method is
correct, you can test that assumption with an assert as follows:

private void doMore(int x) {
assert (x > 0);
// do things with x

}

The only difference that matters between the preceding example and the one before
it is the access modifier. So, do enforce constraints on private arguments, but do not
enforce constraints on public methods. You’re certainly free to compile assertion
code with an inappropriate validation of public arguments, but for the exam (and
real life) you need to know that you shouldn’t do it.

Do not use assertions to validate command-line arguments.
This is really just a special case of the “Do not use assertions to validate arguments to
a public method” rule. If your program requires command-line arguments, you’ll
probably use the exception mechanism to enforce them.

264 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Do use assertions, even in public methods, to check for
cases that you know are never, ever supposed to happen.
This can include code blocks that should never be reached, including the default of a
switch statement as follows:

switch(x) {
case 2: y = 3;
case 3: y = 17;
case 4: y = 27;
default: assert false; // We're never supposed to get here!

}

If you assume that a particular code block won’t be reached, as in the preceding
example where you assert that x must be either 2, 3, or 4, then you can use assert
false to cause an AssertionError to be thrown immediately if you ever do reach
that code. So in the switch example, we’re not performing a boolean test—we’ve
already asserted that we should never be there, so just getting to that point is an
automatic failure of our assertion/assumption.

Do not use assert expressions that can cause side effects!
The following would be a very bad idea:

public void doStuff() {
assert (modifyThings());
// continues on

}
public boolean modifyThings() {

x++ = y;
return true;

}

The rule is: An assert expression should leave the program in the same state it was in
before the expression! Think about it. Assert expressions aren’t guaranteed to always
run, so you don’t want your code to behave differently depending on whether
assertions are enabled. Assertions must not cause any side effects. If assertions are
enabled, the only change to the way your program runs is that an AssertionError
can be thrown if one of your assertions (think: assumptions) turns out to be false.

Working with the Assertion Mechanism (Exam Objectives 2.4 and 2.5) 265

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION SUMMARY
This chapter covered a lot of ground, all of which involves ways of controlling your
program flow, based on a conditional test. First you learned about if and switch
statements. The if statement evaluates one or more expressions to a boolean result.
If the result is true, the program will execute the code in the block that is encompassed
by the if. If an else statement is used and the expression evaluates to false, then the
code following the else will be performed. If the else is not used, then none of the
code associated with the if statement will execute.

You also learned that the switch statement is used to replace multiple if-else
statements. The switch statement can evaluate only integer primitive types that can
be implicitly cast to an int. Those types are byte, short, int, and char.
At runtime, the JVM will try to find a match between the argument to the switch
statement and an argument in a corresponding case statement. If a match is found,
execution will begin at the matching case, and continue on from there until a break
statement is found or the end of the switch statement occurs. If there is no match,
then the default case will execute, if there is one.

You’ve learned about the three looping constructs available in the Java language.
These constructs are the for loop, the while loop, and the do-while loop. In general,
the for loop is used when you know how many times you need to go through the
loop. The while loop is used when you do not know how many times you want to
go through, whereas the do-while is used when you need to go through at least once.
In the for loop and the while loop, the expression will have to evaluate to true to
get inside the block and will check after every iteration of the loop. The do-while
loop does not check the condition until after it has gone through the loop once.
The major benefit of the for loop is the ability to initialize one or more variables
and increment or decrement those variables in the for loop definition.

The break and continue statements can be used in either a labeled or
unlabeled fashion. When unlabeled, the break statement will force the program
to stop processing the innermost looping construct and start with the line of code
following the loop. Using an unlabeled continue command will cause the program
to stop execution of the current iteration of the innermost loop and proceed with
the next iteration. When a break or a continue statement is used in a labeled
manner, it will perform in the same way, with one exception. The statement will not
apply to the innermost loop; instead, it will apply to the loop with the label. The
break statement is used most often in conjunction with the switch statement.

266 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Certification Summary 267

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

When there is a match between the switch expression and the case value, the code
following the case value will be performed. To stop the execution of the code, the
break statement is needed.

You’ve seen how Java provides an elegant mechanism in exception handling.
Exception handling allows you to isolate your error-correction code into separate blocks
so that the main code doesn’t become cluttered by error-checking code. Another
elegant feature allows you to handle similar errors with a single error-handling block,
without code duplication. Also, the error handling can be deferred to methods further
back on the call stack.

You learned that Java’s try keyword is used to specify a guarded region—a block
of code in which problems might be detected. An exception handler is the code that
is executed when an exception occurs. The handler is defined by using Java’s catch
keyword. All catch clauses must immediately follow the related try block. Java
also provides the finally keyword. This is used to define a block of code that is
always executed, either immediately after a catch clause completes or immediately
after the associated try block in the case that no exception was thrown (or there
was a try but no catch). Use finally blocks to release system resources and to
perform any cleanup required by the code in the try block. A finally block is
not required, but if there is one it must follow the catch. It is guaranteed to be called
except in the special cases where the try or catch code issues a System.exit().

An exception object is an instance of class Exception or one of its subclasses. The
catch clause takes, as a parameter, an instance of an object of a type derived from
the Exception class. Java requires that each method either catch any checked exception
it can throw or else declare that it throws the exception. The exception declaration is
part of the method’s public interface. To declare an exception may be thrown, the
throws keyword is used in a method definition, along with a list of all checked
exceptions that might be thrown.

Runtime exceptions are of type RuntimeException (or one of its subclasses). These
exceptions are a special case because they do not need to be handled or declared, and
thus are known as “unchecked” exceptions. Errors are of type java.lang.Error or its
subclasses, and like runtime exceptions, they do not need to be handled or declared.
Checked exceptions include any exception types that are not of type RuntimeException
or Error. If your code fails to either handle a checked exception or declare that it is
thrown, your code won’t compile. But with unchecked exceptions or objects of type
Error, it doesn’t matter to the compiler whether you declare them, or handle them,

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6 (reprint)\ch04.vp
Tuesday, February 25, 2003 6:10:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

do nothing about them, or do some combination of declaring and handling. In
other words, you’re free to declare them and handle them, but the compiler won’t
care one way or the other. It is not good practice to handle an Error, though, because
rarely can you do anything to recover from one.

Assertions, added to the language in version 1.4, are a useful new debugging tool.
You learned how you can use them for testing, by enabling them, but keep them
disabled when the application is deployed. If you have older Java code that uses
the word assert an identifier, then you won’t be able to use assertions, and you must
recompile your older code using the default -source 1.3 flag. If you do want to
enable assertions in your code, then you must use the -source 1.4 flag, causing
the compiler to see assert as a keyword rather than an identifier.

You learned how assert statements always include a boolean expression, and if the
expression is true the code continues on, but if the expression is false, an AssertionError
is thrown. If you use the two-expression assert statement, then the second expression
is evaluated, converted to a String representation and inserted into the stack trace to
give you a little more debugging info. Finally, you saw why assertions should not be
used to enforce arguments to public methods, and why assert expressions must
not contain side effects!

268 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 269

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

✓TWO-MINUTE DRILL
Here are some of the key points from each certification objective in Chapter 4.
You might want to loop through them several times, but only if you’re interested in
passing the exam.

Writing Code Using if and switch Statements
❑ The if statement must have all expressions enclosed by at least one pair of

parentheses.

❑ The only legal argument to an if statement is a boolean, so the if test can be
only on an expression that resolves to a boolean or a boolean variable.

❑ Watch out for boolean assignments (=) that can be mistaken for boolean
equality (==) tests:
boolean x = false;

if (x = true) { } // an assignment, so x will always be true!

❑ Curly braces are optional for if blocks that have only one conditional
statement. But watch out for misleading indentations.

❑ Switch statements can evaluate only the byte, short, int, and char
data types. You can’t say
long s = 30;

switch(s) { }

❑ The case argument must be a literal or final variable! You cannot have
a case that includes a non-final variable, or a range of values.

❑ If the condition in a switch statement matches a case value, execution will run
through all code in the switch following the matching case statement until
a break or the end of the switch statement is encountered. In other words, the
matching case is just the entry point into the case block, but unless there’s a
break statement, the matching case is not the only case code that runs.

❑ The default keyword should be used in a switch statement if you want
to execute some code when none of the case values match the conditional value.

❑ The default block can be located anywhere in the switch block, so if no case
matches, the default block will be entered, and if the default does not
contain a break, then code will continue to execute (fall-through) to the end
of the switch or until the break statement is encountered.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

270 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Writing Code Using Loops
❑ A for statement does not require any arguments in the declaration, but has

three parts: declaration and/or initialization, boolean evaluation, and the
iteration expression.

❑ If a variable is incremented or evaluated within a for loop, it must be declared
before the loop, or within for loop declaration.

❑ A variable declared (not just initialized) within the for loop declaration cannot
be accessed outside the for loop (in other words, code below the for loop won’t
be able to use the variable).

❑ You can initialize more than one variable in the first part of the for loop
declaration; each variable initialization must be separated by a comma.

❑ You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an if statement or
looping construct. You can’t, for example, say:
if (x)

unless x is a boolean variable.

❑ The do-while loop will enter the body of the loop at least once, even if the
test condition is not met.

Using break and continue
❑ An unlabeled break statement will cause the current iteration of the

innermost looping construct to stop and the next line of code following the
loop to be executed.

❑ An unlabeled continue statement will cause the current iteration of the
innermost loop to stop, and the condition of that loop to be checked, and if
the condition is met, perform the loop again.

❑ If the break statement or the continue statement is labeled, it will
cause similar action to occur on the labeled loop, not the innermost loop.

❑ If a continue statement is used in a for loop, the iteration statement is
executed, and the condition is checked again.

Catching an Exception Using try and catch
❑ Exceptions come in two flavors: checked and unchecked.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two-Minute Drill 271

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

❑ Checked exceptions include all subtypes of Exception, excluding classes that
extend RuntimeException.

❑ Checked exceptions are subject to the handle or declare rule; any method that
might throw a checked exception (including methods that invoke methods
that can throw a checked exception) must either declare the exception using
the throws keyword, or handle the exception with an appropriate try/catch.

❑ Subtypes of Error or RuntimeException are unchecked, so the compiler
doesn’t enforce the handle or declare rule. You’re free to handle them, and
you’re free to declare them, but the compiler doesn’t care one way or the other.

❑ If you use an optional finally block, it will always be invoked, regardless
of whether an exception in the corresponding try is thrown or not, and
regardless of whether a thrown exception is caught or not.

❑ The only exception to the finally-will-always-be-called rule is that a finally
will not be invoked if the JVM shuts down. That could happen if code from
the try or catch blocks calls System.exit(), in which case the JVM
will not start your finally block.

❑ Just because finally is invoked does not mean it will complete.
Code in the finally block could itself raise an exception or issue a
System.exit().

❑ Uncaught exceptions propagate back through the call stack, starting from
the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main(), and main()
is “ducking” the exception by declaring it).

❑ You can create your own exceptions, normally by extending Exception or one
of its subtypes. Your exception will then be considered a checked exception, and
the compiler will enforce the handle or declare rule for that exception.

❑ All catch blocks must be ordered from most specific to most general.
For example, if you have a catch clause for both IOException and
Exception, you must put the catch for IOException first (in order, top
to bottom in your code). Otherwise, the IOException would be caught by
catch(Exception e), because a catch argument can catch the
specified exception or any of its subtypes! The compiler will stop you from
defining catch clauses that can never be reached (because it sees that the
more specific exception will be caught first by the more general catch).

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

272 Chapter 4: Flow Control, Exceptions, and Assertions

Working with the Assertion Mechanism
❑ Assertions give you a way to test your assumptions during development and

debugging.

❑ Assertions are typically enabled during testing but disabled during deployment.

❑ You can use assert as a keyword (as of version 1.4) or an identifier, but
not both together. To compile older code that uses assert as an identifier
(for example, a method name), use the -source 1.3 command-line flag
to javac.

❑ Assertions are disabled at runtime by default. To enable them, use
a command-line flag -ea or -enableassertions.

❑ You can selectively disable assertions using the -da or
-disableassertions flag.

❑ If you enable or disable assertions using the flag without any arguments,
you’re enabling or disabling assertions in general. You can combine enabling
and disabling switches to have assertions enabled for some classes and/or
packages, but not others.

❑ You can enable or disable assertions in the system classes with the -esa or
-dsa flags.

❑ You can enable and disable assertions on a class-by-class basis, using the
following syntax:
java -ea -da:MyClass TestClass

❑ You can enable and disable assertions on a package basis, and any package
you specify also includes any subpackages (packages further down the
directory hierarchy).

❑ Do not use assertions to validate arguments to public methods.

❑ Do not use assert expressions that cause side effects. Assertions aren’t
guaranteed to always run, so you don’t want behavior that changes
depending on whether assertions are enabled.

❑ Do use assertions—even in public methods—to validate that a particular
code block will never be reached. You can use
assert false;
for code that should never be reached, so that an assertion error is thrown
immediately if the assert statement is executed.

❑ Do not use assert expressions that can cause side effects.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 273

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. You’ve heard this before, and this time we really mean it: this chapter’s material is crucial
for the exam! Regardless of what the exam question is really testing, there’s a good chance that flow
control code will be part of the question. Expect to see loops and if tests used in questions throughout
the entire range of exam objectives.

Flow Control (if and switch) (Sun Objective 2.1)

1. Given the following,

1. public class Switch2 {
2. final static short x = 2;
3. public static int y = 0;
4. public static void main(String [] args) {
5. for (int z=0; z < 3; z++) {
6. switch (z) {
7. case y: System.out.print("0 ");
8. case x-1: System.out.print("1 ");
9. case x: System.out.print("2 ");
10. }
11. }
12. }
13. }

what is the result?

A. 0 1 2

B. 0 1 2 1 2 2

C. Compilation fails at line 7.

D. Compilation fails at line 8.

E. Compilation fails at line 9.

F. An exception is thrown at runtime.

2. Given the following,

1. public class Switch2 {
2. final static short x = 2;
3. public static int y = 0;
4. public static void main(String [] args) {
5. for (int z=0; z < 3; z++) {
6. switch (z) {

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. case x: System.out.print("0 ");
8. case x-1: System.out.print("1 ");
9. case x-2: System.out.print("2 ");
10. }
11. }
12. }
13. }

what is the result?

A. 0 1 2

B. 0 1 2 1 2 2

C. 2 1 0 1 0 0

D. 2 1 2 0 1 2

E. Compilation fails at line 8.

F. Compilation fails at line 9.

3. Given the following,

1. public class If1 {
2. static boolean b;
3. public static void main(String [] args) {
4. short hand = 42;
5. if (hand < 50 & !b) hand++;
6. if (hand > 50) ;
7. else if (hand > 40) {
8. hand += 7;
9. hand++; }
10. else
11. --hand;
12. System.out.println(hand);
13. }
14. }

what is the result?

A. 41

B. 42

C. 50

D. 51

E. Compiler fails at line 5.

F. Compiler fails at line 6.

274 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Given the following,

1. public class Switch2 {
2. final static short x = 2;
3. public static int y = 0;
4. public static void main(String [] args) {
5. for (int z=0; z < 4; z++) {
6. switch (z) {
7. case x: System.out.print("0 ");
8. default: System.out.print("def ");
9. case x-1: System.out.print("1 "); break;
10. case x-2: System.out.print("2 ");
11. }
12. }
13. }
14. }

what is the result?

A. 0 def 1

B. 2 1 0 def 1

C. 2 1 0 def def

D. 2 1 def 0 def 1

E. 2 1 2 0 def 1 2

F. 2 1 0 def 1 def 1

5. Given the following,

1. public class If2 {
2. static boolean b1, b2;
3. public static void main(String [] args) {
4. int x = 0;
5. if (!b1) {
6. if (!b2) {
7. b1 = true;
8. x++;
9. if (5 > 6) {
10. x++;
11. }
12. if (!b1) x = x + 10;
13. else if (b2 = true) x = x + 100;
14. else if (b1 | b2) x = x + 1000;
15. }
16. }

Self Test 275

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17. System.out.println(x);
18. }
19. }

what is the result?

A. 0

B. 1

C. 101

D. 111

E. 1001

F. 1101

Flow Control (loops) (Sun Objective 2.2)

6. Given the following,

1. public class While {
2. public void loop() {
3. int x= 0;
4. while (1) {
5. System.out.print("x plus one is " + (x + 1));
6. }
7. }
8. }

Which statement is true?

A. There is a syntax error on line 1.

B. There are syntax errors on lines 1 and 4.

C. There are syntax errors on lines 1, 4, and 5.

D. There is a syntax error on line 4.

E. There are syntax errors on lines 4 and 5.

F. There is a syntax error on line 5.

7. Given the following,

1. class For {
2. public void test() {
3.
4. System.out.println("x = "+ x);

276 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. }
6. }
7. }

and the following output,

x = 0
x = 1

which two lines of code (inserted independently) will cause this output? (Choose two.)

A. for (int x = -1; x < 2; ++x) {

B. for (int x = 1; x < 3; ++x) {

C. for (int x = 0; x > 2; ++x) {

D. for (int x = 0; x < 2; x++) {

E. for (int x = 0; x < 2; ++x) {

8. Given the following,

1. public class Test {
2. public static void main(String [] args) {
3. int I = 1;
4. do while (I < 1)
5. System.out.print("I is " + I);
6. while (I > 1) ;
7. }
8. }

what is the result?

A. I is 1

B. I is 1 I is 1

C. No output is produced.

D. Compilation error

E. I is 1 I is 1 I is 1 in an infinite loop.

9. Given the following,

11. int I = 0;
12. outer:
13. while (true) {
14. I++;
15. inner:
16. for (int j = 0; j < 10; j++) {

Self Test 277

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17. I += j;
18. if (j == 3)
19. continue inner;
20. break outer;
21. }
22. continue outer;
23. }
24. System.out.println(I);
25.
26.

what is the result?

A. 1

B. 2

C. 3

D. 4

10. Given the following,

1. int I = 0;
2. label:
3. if (I < 2) {
4. System.out.print("I is " + I);
5. I++;
6. continue label;
7. }

what is the result?

A. I is 0

B. I is 0 I is 1

C. Compilation fails.

D. None of the above

Exceptions (Sun Objectives 2.3 and 2.4)

11. Given the following,

1. System.out.print("Start ");
2. try {
3. System.out.print("Hello world");
4. throw new FileNotFoundException();

278 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. }
6. System.out.print(" Catch Here ");
7. catch(EOFException e) {
8. System.out.print("End of file exception");
9. }
10. catch(FileNotFoundException e) {
11. System.out.print("File not found");
12. }

and given that EOFException and FileNotFoundException are both subclasses of IOException,
and further assuming this block of code is placed into a class, which statement is most true
concerning this code?

A. The code will not compile.

B. Code output: Start Hello world File Not Found.

C. Code output: Start Hello world End of file exception.

D. Code output: Start Hello world Catch Here File not found.

12. Given the following,

1. public class MyProgram {
2. public static void main(String args[]){
3. try {
4. System.out.print("Hello world ");
5. }
6. finally {
7. System.out.println("Finally executing ");
8. }
9. }
10. }

what is the result?

A. Nothing. The program will not compile because no exceptions are specified.

B. Nothing. The program will not compile because no catch clauses are specified.

C. Hello world.

D. Hello world Finally executing

13. Given the following,

1. import java.io.*;
2. public class MyProgram {
3. public static void main(String args[]){
4. FileOutputStream out = null;

Self Test 279

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Monday, November 18, 2002 2:31:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. try {
6. out = new FileOutputStream("test.txt");
7. out.write(122);
8. }
9. catch(IOException io) {

10. System.out.println("IO Error.");
11. }
12. finally {
13. out.close();
14. }
15. }
16. }

and given that all methods of class FileOutputStream, including close(), throw an
IOException, which of these is true? (Choose one.)

A. This program will compile successfully.

B. This program fails to compile due to an error at line 4.

C. This program fails to compile due to an error at line 6.

D. This program fails to compile due to an error at line 9.

E. This program fails to compile due to an error at line 13.

14. Given the following,

1. public class MyProgram {
2. public static void throwit() {
3. throw new RuntimeException();
4. }
5. public static void main(String args[]){
6. try {
7. System.out.println("Hello world ");
8. throwit();
9. System.out.println("Done with try block ");

10. }
11. finally {
12. System.out.println("Finally executing ");
13. }
14. }
15. }

which answer most closely indicates the behavior of the program?

A. The program will not compile.

280 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

B. The program will print Hello world, then will print that a RuntimeException has
occurred, then will print Done with try block, and then will print Finally
executing.

C. The program will print Hello world, then will print that a RuntimeException has
occurred, and then will print Finally executing.

D. The program will print Hello world, then will print Finally executing, then
will print that a RuntimeException has occurred.

15. Given the following,

1. public class RTExcept {
2. public static void throwit () {
3. System.out.print("throwit ");
4. throw new RuntimeException();
5. }
6. public static void main(String [] args) {
7. try {
8. System.out.print("hello ");
9. throwit();
10. }
11. catch (Exception re) {
12. System.out.print("caught ");
13. }
14. finally {
15. System.out.print("finally ");
16. }
17. System.out.println("after ");
18. }
19. }

what is the result?

A. hello throwit caught

B. Compilation fails

C. hello throwit RuntimeException caught after

D. hello throwit RuntimeException

E. hello throwit caught finally after

F. hello throwit caught finally after RuntimeException

Self Test 281

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

282 Chapter 4: Flow Control, Exceptions, and Assertions

Assertions (Sun Objectives 2.5 and 2.6)

16. Which of the following statements is true?

A. In an assert statement, the expression after the colon (:) can be any Java expression.

B. If a switch block has no default, adding an assert default is considered appropriate.

C. In an assert statement, if the expression after the colon (:) does not have a value, the
assert’s error message will be empty.

D. It is appropriate to handle assertion failures using a catch clause.

17. Which two of the following statements are true? (Choose two.)

A. It is sometimes good practice to throw an AssertionError explicitly.

B. It is good practice to place assertions where you think execution should never reach.

C. Private getter() and setter() methods should not use assertions to verify
arguments.

D. If an AssertionError is thrown in a try-catch block, the finally block will be
bypassed.

E. It is proper to handle assertion statement failures using a catch (AssertionException
ae) block.

18. Given the following,

1. public class Test {
2. public static int y;
3. public static void foo(int x) {
4. System.out.print("foo ");
5. y = x;
6. }
7. public static int bar(int z) {
8. System.out.print("bar ");
9. return y = z;
10. }
11. public static void main(String [] args) {
12. int t = 0;
13. assert t > 0 : bar(7);
14. assert t > 1 : foo(8);
15. System.out.println("done ");
16. }
17. }

what is the result?

A. bar

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test 283

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

B. bar done

C. foo done

D. bar foo done

E. Compilation fails

F. An error is thrown at runtime.

19. Which two of the following statements are true? (Choose two.)

A. If assertions are compiled into a source file, and if no flags are included at runtime,
assertions will execute by default.

B. As of Java version 1.4, assertion statements are compiled by default.

C. With the proper use of runtime arguments, it is possible to instruct the VM to disable
assertions for a certain class, and to enable assertions for a certain package, at the same time.

D. The following are all valid runtime assertion flags:
-ea, -esa, -dsa, -enableassertions,
-disablesystemassertions

E. When evaluating command-line arguments, the VM gives –ea flags precedence over –da
flags.

20. Given the following,

1. public class Test2 {
2. public static int x;
3. public static int foo(int y) {
4. return y * 2;
5. }
6. public static void main(String [] args) {
7. int z = 5;
8. assert z > 0;
9. assert z > 2: foo(z);
10. if (z < 7)
11. assert z > 4;
12. switch (z) {
13. case 4: System.out.println("4 ");
14. case 5: System.out.println("5 ");
15. default: assert z < 10;
16. }
17. if (z < 10)
18. assert z > 4: z++;
19. System.out.println(z);
20. }
21. }

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

which line is an example of an inappropriate use of assertions?

A. Line 8

B. Line 9

C. Line 11

D. Line 15

E. Line 18

284 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Self Test Answers 285

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

SELF TEST ANSWERS

Flow Control (if and switch) (Sun Objective 2.1)

1. � C. Case expressions must be constant expressions. Since x is marked final, lines 8 and 9
are legal; however y is not a final so the compiler will fail at line 7.
� A, B, D, E, and F, are incorrect based on the program logic described above.

2. � D. The case expressions are all legal because x is marked final, which means the
expressions can be evaluated at compile time. In the first iteration of the for loop case x-2
matches, so 2 is printed. In the second iteration, x-1 is matched so 1 and 2 are printed
(remember, once a match is found all remaining statements are executed until a break
statement is encountered). In the third iteration, x is matched so 0 1 and 2 are printed.
� A, B, C, E, and F are incorrect based on the program logic described above.

3. � D. In Java, boolean instance variables are initialized to false, so the if test on line 5 is
true and hand is incremented. Line 6 is legal syntax, a do nothing statement. The else-if is
true so hand has 7 added to it and is then incremented.
� A, B, C, E, and F are incorrect based on the program logic described above.

4. � F. When z == 0 , case x-2 is matched. When z == 1, case x-1 is
matched and then the break occurs. When z == 2, case x, then default, then
x-1 are all matched. When z == 3, default, then x-1 are matched. The rules for
default are that it will fall through from above like any other case (for instance when z
== 2), and that it will match when no other cases match (for instance when z == 3).
� A, B, C, D, and E are incorrect based on the program logic described above.

5. � C. As instance variables, b1 and b2 are initialized to false. The if tests on lines 5 and 6
are successful so b1 is set to true and x is incremented. The next if test to succeed is on line 13
(note that the code is not testing to see if b2 is true, it is setting b2 to be true). Since line 13
was successful, subsequent else-if’s (line 14) will be skipped.
� A, B, D, E, and F are incorrect based on the program logic described above.

Flow Control (loops) (Sun Objective 2.2)

6. � D. Using the integer 1 in the while statement, or any other looping or conditional
construct for that matter, will result in a compiler error. This is old C syntax, not valid Java.
� A, B, C, E, and F are incorrect because line 1 is valid (Java is case sensitive so While is a
valid class name). Line 5 is also valid because an equation may be placed in a String operation
as shown.

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. � D and E. It doesn’t matter whether you preincrement or postincrement the variable in a
for loop; it is always incremented after the loop executes and before the iteration expression is
evaluated.
� A and B are incorrect because the first iteration of the loop must be zero. C is incorrect
because the test will fail immediately and the for loop will not be entered.

8. � C. There are two different looping constructs in this problem. The first is a do-while loop
and the second is a while loop, nested inside the do-while. The body of the do-while is only a
single statement—brackets are not needed. You are assured that the while expression will be
evaluated at least once, followed by an evaluation of the do-while expression. Both expressions
are false and no output is produced.
� A, B, D, and E are incorrect based on the program logic described above.

9. � A. The program flows as follows: I will be incremented after the while loop is entered,
then I will be incremented (by zero) when the for loop is entered. The if statement evaluates
to false, and the continue statement is never reached. The break statement tells the
JVM to break out of the outer loop, at which point I is printed and the fragment is done.
� B, C, and D are incorrect based on the program logic described above.

10. � C. The code will not compile because a continue statement can only occur in a
looping construct. If this syntax were legal, the combination of the continue and the if
statements would create a kludgey kind of loop, but the compiler will force you to write
cleaner code than this.
� A, B, and D are incorrect based on the program logic described above.

Exceptions (Sun Objectives 2.3 and 2.4)

11. � A. Line 6 will cause a compiler error. The only legal statements after try blocks are either
catch or finally statements.
� B, C, and D are incorrect based on the program logic described above. If line 6 was
removed, the code would compile and the correct answer would be B.

12. � D. Finally clauses are always executed. The program will first execute the try block,
printing Hello world, and will then execute the finally block, printing Finally
executing.
� A, B, and C are incorrect based on the program logic described above. Remember that
either a catch or a finally statement must follow a try. Since the finally is present,
the catch is not required.

286 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13. � E. Any method (in this case, the main() method) that throws a checked exception (in
this case, out.close()) must be called within a try clause, or the method must declare
that it throws the exception. Either main() must declare that it throws an exception, or the
call to out.close() in the finally block must fall inside a (in this case nested)
try-catch block.
� A, B, C, and D are incorrect based on the program logic described above.

14. � D. Once the program throws a RuntimeException (in the throwit() method) that
is not caught, the finally block will be executed and the program will be terminated. If a
method does not handle an exception, the finally block is executed before the exception
is propagated.
� A, B, and C are incorrect based on the program logic described above.

15. � E. The main() method properly catches and handles the RuntimeException in the
catch block, finally runs (as it always does), and then the code returns to normal.
� A, B, C, D, and F are incorrect based on the program logic described above. Remember
that properly handled exceptions do not cause the program to stop executing.

Assertions (Sun Objectives 2.5 and 2.6)

16. � B. Adding an assertion statement to a switch statement that previously had no default
case is considered an excellent use of the assert mechanism.
� A is incorrect because only Java expressions that return a value can be used. For instance, a
method that returns void is illegal. C is incorrect because the expression after the colon must
have a value. D is incorrect because assertions throw errors and not exceptions, and assertion
errors do cause program termination and should not be handled.

17. � A and B. A is correct because it is sometimes advisable to thrown an assertion error even
if assertions have been disabled. B is correct. One of the most common uses of assert
statements in debugging is to verify that locations in code that have been designed to be
unreachable are in fact never reached.
� C is incorrect because it is considered appropriate to check argument values in private
methods using assertions. D is incorrect; finally is never bypassed. E is incorrect because
AssertionErrors should never be handled.

18. � E. The foo() method returns void. It is a perfectly acceptable method, but because it
returns void it cannot be used in an assert statement, so line 14 will not compile.
� A, B, C, D, and F are incorrect based on the program logic described above.

Self Test Answers 287

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

19. � C and D. C is true because multiple VM flags can be used on a single invocation of a Java
program. D is true, these are all valid flags for the VM.
� A is incorrect because at runtime assertions are ignored by default. B is incorrect because as
of Java 1.4 you must add the argument –source 1.4 to the command line if you want the
compiler to compile assertion statements. E is incorrect because the VM evaluates all assertion
flags left to right.

20. � E. Assert statements should not cause side effects. Line 18 changes the value of z if the
assert statement is false.
� A is fine; a second expression in an assert statement is not required. B is fine because it is
perfectly acceptable to call a method with the second expression of an assert statement. C is fine
because it is proper to call an assert statement conditionally. D is fine because it is considered
good form to add a default assert statement to switch blocks that have no default case.

EXERCISE ANSWERS
Exercise 4.1: Creating a switch-case Statement

The code should look something like this:

char temp = 'c';
switch(temp) {

case 'a': {
System.out.println("A");
break;

}
case 'b': {

System.out.println("B");
break;

}
case 'c':

System.out.println("C");
break;

default:
System.out.println("default");

}

288 Chapter 4: Flow Control, Exceptions, and Assertions

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exercise Answers 289

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

Exercise 4-2: Creating a Labeled while Loop
The code should look something like this:

class LoopTest {
public static void main(String [] args) {

int age = 12;
outer:
while(age < 21) {

age += 1;
if(age == 16) {

System.out.println("Obtain driver's license");
continue outer;

}
System.out.println("Another year.");

}
}

}

Exercise 4-3: Propagating and Catching an Exception
The code should look something like this:

class Propagate {
public static void main(String [] args) {

try {
System.out.println(reverse("Hello"));

}
catch (Exception e) {

System.out.println("The string was blank");
}
finally {

System.out.println("All done!");
}

}
public static String reverse(String s) throws Exception {

if (s.length() == 0) {
throw new Exception();

}
String reverseStr = "";
for(int i=s.length()-1;i>=0;--i) {

reverseStr += s.charAt(i);
}
return reverseStr;

}
}

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exercise 4-4: Creating an Exception
The code should look something like this:

class BadFoodException extends Exception {}
class MyException {

public static void main(String [] args) {
try {
checkFood(args[0]);

} catch(BadFoodException e) {
e. printStackTrace();

}
}
public static void checkWord(String s) {

String [] badFoods = {"broccoli","brussel sprouts","sardines"};
for(int i=0;i<badFoods.length;++i) {

if (s.equals(badFoods[i]))
throw new BadWFoodException();

}
System.out.println(s + " is ok with me.");

}
}

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 4

290 Chapter 4: Flow Control, Exceptions, and Assertions

P:\010Comp\CertPrs8\684-6\ch04.vp
Friday, November 15, 2002 12:17:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

