
CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8
Blind Folio 635

8
Inner Classes

Certification Objectives

l Inner Classes

	 l Method-Local Inner Classes

	 l Anonymous Inner Classes

	

 l Static Nested Classes
 	
3 Two-Minute Drill

 Q&A Self Test

ch8-1128f.indd 635 11/28/05 10:56:21 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

636  Chapter 8:   Inner Classes

Inner classes (including static nested classes) appear throughout the exam. Although there
are no official exam objectives specifically about inner classes, Objective 1.1 includes inner
(a.k.a. nested) classes. More important, the code used to represent questions on virtually any

topic on the exam can involve inner classes. Unless you deeply understand the rules and syntax
for inner classes, you're likely to miss questions you'd otherwise be able to answer. As if the exam
weren't already tough enough.

This chapter looks at the ins and outs (inners and outers?) of inner classes,
and exposes you to the kinds of (often strange-looking) syntax examples you'll
see scattered throughout the entire exam. So you've really got two goals for this
chapter—to learn what you'll need to answer questions testing your inner class
knowledge, and to learn how to read and understand inner class code so that you
can correctly process questions testing your knowledge of other topics.

So what's all the hoopla about inner classes? Before we get into it, we have to
warn you (if you don't already know) that inner classes have inspired passionate love
‘em or hate ‘em debates since first introduced in version 1.1 of the language. For
once, we're going to try to keep our opinions to ourselves here and just present the
facts as you'll need to know them for the exam. It's up to you to decide how—and
to what extent—you should use inner classes in your own development. We mean
it. We believe they have some powerful, efficient uses in very specific situations,
including code that's easier to read and maintain, but they can also be abused and
lead to code that's as clear as a cornfield maze, and to the syndrome known as
"reuseless": code that's useless over and over again.

Inner classes let you define one class within another. They provide a type of
scoping for your classes since you can make one class a member of another class. Just
as classes have member variables and methods, a class can also have member classes.
They come in several flavors, depending on how and where you define the inner
class, including a special kind of inner class known as a "top-level nested class" (an
inner class marked static), which technically isn't really an inner class. Because a
static nested class is still a class defined within the scope of another class, we're still
going to cover them in this chapter on inner classes.

Unlike the other chapters in this book, the certification objectives for inner
classes don't have official exam objective numbers since they're part of other
objectives covered elsewhere. So for this chapter, the Certification Objective
headings in the following list, represent the four inner class topics discussed in this
chapter, rather than four official exam objectives:

ch8-1128f.indd 636 11/28/05 10:56:22 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Inner Classes  637

n 	 Inner classes

n 	 Method-local inner classes

n 	 Anonymous inner classes

n 	 Static nested classes

Certification Objective

Inner Classes
You're an OO programmer, so you know that for reuse and flexibility/extensibility
you need to keep your classes specialized. In other words, a class should have code
only for the things an object of that particular type needs to do; any other behavior
should be part of another class better suited for that job. Sometimes, though, you
find yourself designing a class where you discover you need behavior that belongs
in a separate, specialized class, but also needs to be intimately tied to the class
you're designing.

Event handlers are perhaps the best example of this (and are, in fact, one of the
main reasons inner classes were added to the language in the first place). If you have
a GUI class that performs some job like, say, a chat client, you might want the
chat-client–specific methods (accept input, read new messages from server, send user
input back to server, and so on) to be in the class. But how do those methods get
invoked in the first place? A user clicks a button. Or types some text in the input
field. Or a separate thread doing the I/O work of getting messages from the server
has messages that need to be displayed in the GUI. So you have chat-client–specific
methods, but you also need methods for handling the "events" (button presses,
keyboard typing, I/O available, and so on) that drive the calls on those chat-
client methods. The ideal scenario—from an OO perspective—is to keep the chat-
client–specific methods in the ChatClient class, and put the event-handling code in a
separate event-handling class.

Nothing unusual about that so far; after all, that's how you're supposed to design
OO classes. As specialists. But here's the problem with the chat-client scenario: the
event-handling code is intimately tied to the chat-client–specific code! Think about
it: when the user presses a Send button (indicating that they want their typed-in
message to be sent to the chat server), the chat-client code that sends the message
needs to read from a particular text field. In other words, if the user clicks Button A,
the program is supposed to extract the text from the TextField B, of a particular

ch8-1128f.indd 637 11/28/05 10:56:22 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

ChatClient instance. Not from some other text field from some other object, but
specifically the text field that a specific instance of the ChatClient class has a
reference to. So the event-handling code needs access to the members of the
ChatClient object, to be useful as a "helper" to a particular ChatClient instance.

And what if the ChatClient class needs to inherit from one class, but the event
handling code is better off inheriting from some other class? You can't make a
class extend more than one class, so putting all the code (the chat-client– specific
code and the event-handling code) in one class won't work in that case. So what
you'd really like to have is the benefit of putting your event code in a separate class
(better OO, encapsulation, and the ability to extend a class other than the class the
ChatClient extends) but still allow the event-handling code to have easy access
to the members of the ChatClient (so the event-handling code can, for example,
update the ChatClient's private instance variables). You could manage it by making
the members of the ChatClient accessible to the event-handling class by, for
example, marking them public. But that's not a good solution either.

You already know where this is going—one of the key benefits of an inner class
is the "special relationship" an inner class instance shares with an instance of
the outer class. That "special relationship" gives code in the inner class access to
members of the enclosing (outer) class, as if the inner class were part of the outer
class. In fact, that's exactly what it means: the inner class is a part of the outer class.
Not just a "part" but a full-fledged, card-carrying member of the outer class. Yes, an
inner class instance has access to all members of the outer class, even those marked
private. (Relax, that's the whole point, remember? We want this separate inner
class instance to have an intimate relationship with the outer class instance, but we
still want to keep everyone else out. And besides, if you wrote the outer class, then
you also wrote the inner class! So you're not violating encapsulation; you
designed it this way.)

Coding a "Regular" Inner Class
We use the term regular here to represent inner classes that are not:

n 	 Static

n 	 Method-local

n 	 Anonymous

For the rest of this section, though, we'll just use the term "inner class" and drop
the "regular". (When we switch to one of the other three types in the preceding list,
you'll know it.) You define an inner class within the curly braces of the outer class:

638  Chapter 8:   Inner Classes

ch8-1128f.indd 638 11/28/05 10:56:22 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

class MyOuter {
 class MyInner { }
}

Piece of cake. And if you compile it,

%javac MyOuter.java

you'll end up with two class files:

MyOuter.class
MyOuter$MyInner.class

The inner class is still, in the end, a separate class, so a separate class file is generated
for it. But the inner class file isn't accessible to you in the usual way. You can't say

%java MyOuter$MyInner

in hopes of running the main() method of the inner class, because a regular inner class
can't have static declarations of any kind. The only way you can access the inner class
is through a live instance of the outer class! In other words, only at runtime when
there's already an instance of the outer class to tie the inner class instance to. You'll see
all this in a moment. First, let's beef up the classes a little:

class MyOuter {
 private int x = 7;

 // inner class definition
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 } // close inner class definition

} // close outer class

The preceding code is perfectly legal. Notice that the inner class is indeed
accessing a private member of the outer class. That's fine, because the inner
class is also a member of the outer class. So just as any member of the outer class
(say, an instance method) can access any other member of the outer class, private
or not, the inner class—also a member—can do the same.

OK, so now that we know how to write the code giving an inner class access to
members of the outer class, how do you actually use it?

Coding a "Regular" Inner Class  639

ch8-1128f.indd 639 11/28/05 10:56:23 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Instantiating an Inner Class
To create an instance of an inner class, you must have an instance of the outer class
to tie to the inner class. There are no exceptions to this rule: an inner class instance
can never stand alone without a direct relationship to an instance of the outer class.

Instantiating an Inner Class from Within the Outer Class Most often, it
is the outer class that creates instances of the inner class, since it is usually the outer
class wanting to use the inner instance as a helper for its own personal use. We'll
modify the MyOuter class to create an instance of MyInner:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner(); // make an inner instance
 in.seeOuter();
 }

 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 }
}

You can see in the preceding code that the MyOuter code treats MyInner just as
though MyInner were any other accessible class—it instantiates it using the class
name (new MyInner()), and then invokes a method on the reference variable
(in.seeOuter()). But the only reason this syntax works is because the outer class
instance method code is doing the instantiating. In other words, there's already an
instance of the outer class—the instance running the makeInner() method. So how
do you instantiate a MyInner object from somewhere outside the MyOuter class? Is
it even possible? (Well, since we're going to all the trouble of making a whole new
subhead for it, as you'll see next, there's no big mystery here.)

Creating an Inner Class Object from Outside the Outer Class
Instance Code Whew. Long subhead there, but it does explain what we're
trying to do. If we want to create an instance of the inner class, we must have an
instance of the outer class. You already know that, but think about the

640  Chapter 8:   Inner Classes

ch8-1128f.indd 640 11/28/05 10:56:23 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

implications…it means that, without a reference to an instance of the outer class,
you can't instantiate the inner class from a static method of the outer class (be-
cause, don't forget, in static code there is no this reference), or from any other
code in any other class. Inner class instances are always handed an implicit reference
to the outer class. The compiler takes care of it, so you'll never see anything but the
end result—the ability of the inner class to access members of the outer class. The
code to make an instance from anywhere outside non-static code of the outer class
is simple, but you must memorize this for the exam!

public static void main(String[] args) {
 MyOuter mo = new MyOuter(); // gotta get an instance!
 MyOuter.MyInner inner = mo.new MyInner();
 inner.seeOuter();
}

The preceding code is the same regardless of whether the main() method is within
the MyOuter class or some other class (assuming the other class has access to
MyOuter, and sinceMyOuter has default access, that means the code must be in a
class within the same package asMyOuter).

If you're into one-liners, you can do it like this:

public static void main(String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
}

You can think of this as though you're invoking a method on the outer instance,
but the method happens to be a special inner class instantiation method, and it's
invoked using the keyword new. Instantiating an inner class is the only scenario
in which you'll invoke new on an instance as opposed to invoking new to
construct an instance.

Here's a quick summary of the differences between inner class instantiation code
that's within the outer class (but not static), and inner class instantiation code
that's outside the outer class:

n 	 From inside the outer class instance code, use the inner class name in the
 normal way:

 MyInner mi = new MyInner();

Coding a "Regular" Inner Class  641

ch8-1128f.indd 641 11/28/05 10:56:23 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

n 	 From outside the outer class instance code (including static method code
within the outer class), the inner class name must now include the outer
class's name:

 MyOuter.MyInner

 To instantiate it, you must use a reference to the outer class:

 new MyOuter().new MyInner(); or outerObjRef.new MyInner();

 if you already have an instance of the outer class.

Referencing the Inner or Outer Instance
from Within the Inner Class

How does an object refer to itself normally? By using the this reference. Here is a
quick review of this:

n 	 The keyword this can be used only from within instance code.
In other words, not within static code.

n 	 The this reference is a reference to the currently executing object. In other
words, the object whose reference was used to invoke the currently running
method.

n 	 The this reference is the way an object can pass a reference to itself to some	
other code, as a method argument:

 public void myMethod() {
 MyClass mc = new MyClass();
 mc.doStuff(this); // pass a ref to object running myMethod
 }

Within an inner class code, the this reference refers to the instance of the inner
class, as you'd probably expect, since this always refers to the currently executing
object. But what if the inner class code wants an explicit reference to the outer class
instance that the inner instance is tied to? In other words, how do you reference the
"outer this"? Although normally the inner class code doesn't need a reference to
the outer class, since it already has an implicit one it's using to access the members
of the outer class, it would need a reference to the outer class if it needed to pass that
reference to some other code as follows:

642  Chapter 8:   Inner Classes

ch8-1128f.indd 642 11/28/05 10:56:24 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
}

If we run the complete code as follows:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner();
 in.seeOuter();
 }
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
 }
 public static void main (String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
 }
}

the output is something like this:

Outer x is 7
Inner class ref is MyOuter$MyInner@113708
Outer class ref is MyOuter@33f1d7

So the rules for an inner class referencing itself or the outer instance are as follows:

n	 To reference the inner class instance itself, from within the inner class code,
use this.

n	 To reference the "outer this" (the outer class instance) from within the inner
class code, use NameOfOuterClass.this (example, MyOuter.this).

Referencing the Inner or Outer Instance from Within the Inner Class  643

ch8-1128f.indd 643 11/28/05 10:56:24 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Member Modifiers Applied to Inner Classes A regular inner class is a
member of the outer class just as instance variables and methods are, so the
following modifiers can be applied to an inner class:

n	 final

n 	abstract

n 	public

n 	 private

n 	 protected

n 	 static—but static turns it into a static nested class not an inner class.

n 	 strictfp

Certification Objective

Method-Local Inner Classes
A regular inner class is scoped inside another class's curly braces, but outside
any method code (in other words, at the same level that an instance variable is
declared). But you can also define an inner class within a method:

class MyOuter2 {
 private String x = "Outer2";

 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()

} // close outer class

The preceding code declares a class, MyOuter2, with one method, doStuff().
But inside doStuff(), another class, MyInner, is declared, and it has a method of
its own, seeOuter(). The code above is completely useless, however, because it

644  Chapter 8:   Inner Classes

ch8-1128f.indd 644 11/28/05 10:56:24 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

never instantiates the inner class! Just because you declared the class doesn't mean
you created an instance of it. So if you want to actually use the inner class (say, to
invoke its methods), then you must make an instance of it somewhere within the
method but below the inner class definition. The following legal code shows how to
instantiate and use a method-local inner class:

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition

 MyInner mi = new MyInner(); // This line must come
 // after the class
 mi.seeOuter();
 } // close outer class method doStuff()
} // close outer class

What a Method-Local Inner Object Can and Can't Do
A method-local inner class can be instantiated only within the method where the inner
class is defined. In other words, no other code running in any other method—inside
or outside the outer class—can ever instantiate the method-local inner class. Like
regular inner class objects, the method-local inner class object shares a special
relationship with the enclosing (outer) class object, and can access its private (or
any other) members. However, the inner class object cannot use the local variables
of the method the inner class is in. Why not?

Think about it. The local variables of the method live on the stack, and exist only for
the lifetime of the method. You already know that the scope of a local variable is
limited to the method the variable is declared in. When the method ends, the stack
frame is blown away and the variable is history. But even after the method
completes, the inner class object created within it might still be alive on the heap if,
for example, a reference to it was passed into some other code and then stored in an
instance variable. Because the local variables aren't guaranteed to be alive as long
as the method-local inner class object, the inner class object can't use them. Unless
the local variables are marked final! The following code attempts to access a local
variable from within a method-local inner class.

What a Method-Local Inner Object Can and Can't Do  645

ch8-1128f.indd 645 11/28/05 10:56:24 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 String z = "local variable";
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Local variable z is " + z); // Won't Compile!
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()
} // close outer class

Compiling the preceding code really upsets the compiler:

MyOuter2.java:8: local variable z is accessed from within inner class;
needs to be declared final

 System.out.println("Local variable z is " + z);
 ^

Marking the local variable z as final fixes the problem:

final String z = "local variable"; // Now inner object can use it

And just a reminder about modifiers within a method: the same rules apply to
method-local inner classes as to local variable declarations. You can't, for example,
mark a method-local inner class public, private, protected, static, transient,
and the like. The only modifiers you can apply to a method-local inner class are
abstract and final, but as always, never both at the same time.

Remember that a local class declared in a static method has access
to only static members of the enclosing class, since there is no associated instance of the
enclosing class. If you're in a static method there is no this, so an inner class in a static
method is subject to the same restrictions as the static method. In other words, no access
to instance variables.

646  Chapter 8:   Inner Classes

ch8-1128f.indd 646 11/28/05 10:56:26 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Certification Objective

Anonymous Inner Classes
So far we've looked at defining a class within an enclosing class (a regular inner
class) and within a method (a method-local inner class). Finally, we're going to look
at the most unusual syntax you might ever see in Java; inner classes declared without
any class name at all (hence the word anonymous). And if that's not weird enough,
you can define these classes not just within a method, but even within an argument
to a method. We'll look first at the plain-old (as if there is such a thing as a plain-old
anonymous inner class) version (actually, even the plain-old version comes in two
flavors), and then at the argument-declared anonymous inner class.

Perhaps your most important job here is to learn to not be thrown when you see
the syntax. The exam is littered with anonymous inner class code: you might
see it on questions about threads, wrappers, overriding, garbage collection, and...
well, you get the idea.

Plain-Old Anonymous Inner Classes, Flavor One

Check out the following legal-but-strange-the-first-time-you-see-it code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }

}
class Food {
 Popcorn p = new Popcorn() {
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };

}

Let's look at what's in the preceding code:

n 	 We define two classes, Popcorn and Food.

n 	 Popcorn has one method, pop().

n 	 Food has one instance variable, declared as type Popcorn. That's it for Food.
Food has no methods.

Plain-Old Anonymous Inner Classes, Flavor One  647

ch8-1128f.indd 647 11/28/05 10:56:27 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

And here's the big thing to get:

The Popcorn reference variable refers not to an instance of Popcorn, but to an
instance of an anonymous (unnamed) subclass of Popcorn.

Let's look at just the anonymous class code:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. };

Line 2 Line 2 starts out as an instance variable declaration of type Popcorn. But
instead of looking like this:

Popcorn p = new Popcorn(); // notice the semicolon at the end

there's a curly brace at the end of line 2, where a semicolon would normally be.

Popcorn p = new Popcorn() { // a curly brace, not a semicolon

You can read line 2 as saying,

Declare a reference variable, p, of type Popcorn. Then declare a new class that
has no name, but that is a subclass of Popcorn. And here's the curly brace that
opens the class definition…

Line 3 Line 3, then, is actually the first statement within the new class
definition. And what is it doing? Overriding the pop() method of the superclass
Popcorn. This is the whole point of making an anonymous inner class—to override
one or more methods of the superclass! (Or to implement methods of an interface,
but we'll save that for a little later.)

Line 4 Line 4 is the first (and in this case only) statement within the overriding
pop() method. Nothing special there.

Line 5 Line 5 is the closing curly brace of the pop() method. Nothing special.

Line 6 Here's where you have to pay attention: line 6 includes a curly brace
closing off the anonymous class definition (it's the companion brace to the one

648  Chapter 8:   Inner Classes

ch8-1128f.indd 648 11/28/05 10:56:27 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

on line 2), but there's more! Line 6 also has the semicolon that ends the statement
started on line 2—the statement where it all began—the statement declaring and
initializing the Popcorn reference variable. And what you're left with is a Popcorn
reference to a brand-new instance of a brand-new, just-in-time, anonymous (no
name) subclass of Popcorn.

Polymorphism is in play when anonymous inner classes are involved. Remember
that, as in the preceding Popcorn example, we're using a superclass reference
variable type to refer to a subclass object. What are the implications? You can
only call methods on an anonymous inner class reference that are defined in the
reference variable type! This is no different from any other polymorphic references,
for example,

class Horse extends Animal{
 void buck() { }
}
class Animal {
 void eat() { }
}

Plain-Old Anonymous Inner Classes, Flavor One  649

The closing semicolon is hard to spot. Watch for code like this:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. } // Missing the semicolon needed to end
 // the statement started on 2!
7. Foo f = new Foo();

You'll need to be especially careful about the syntax when inner classes
are involved, because the code on line 6 looks perfectly natural. We're not used to seeing
semicolons following curly braces (the only other time it happens is with shortcut array
initializations).

ch8-1128f.indd 649 11/28/05 10:56:28 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

class Test {
 public static void main (String[] args) {
 Animal h = new Horse();
 h.eat(); // Legal, class Animal has an eat() method
 h.buck(); // Not legal! Class Animal doesn't have buck()
 }
}

So on the exam, you must be able to spot an anonymous inner class that—
rather than overriding a method of the superclass—defines its own new method. The
method definition isn't the problem, though; the real issue is how do you invoke
that new method? The reference variable type (the superclass) won't know anything
about that new method (defined in the anonymous subclass), so the compiler will
complain if you try to invoke any method on an anonymous inner class reference that
is not in the superclass class definition.

Check out the following, illegal code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }
}

class Food {
 Popcorn p = new Popcorn() {
 public void sizzle() {
 System.out.println("anonymous sizzling popcorn");
 }
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };

 public void popIt() {
 p.pop(); // OK, Popcorn has a pop() method
 p.sizzle(); // Not Legal! Popcorn does not have sizzle()
 }
}

Compiling the preceding code gives us something like,

Anon.java:19: cannot resolve symbol
symbol : method sizzle ()

650  Chapter 8:   Inner Classes

ch8-1128f.indd 650 11/28/05 10:56:28 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

location: class Popcorn
 p.sizzle();
 ^

which is the compiler's way of saying, "I can't find method sizzle() in class
Popcorn," followed by, "Get a clue."

Plain-Old Anonymous Inner Classes, Flavor Two
The only difference between flavor one and flavor two is that flavor one creates
an anonymous subclass of the specified class type, whereas flavor two creates an
anonymous implementer of the specified interface type. In the previous examples,
we defined a new anonymous subclass of type Popcorn as follows:

Popcorn p = new Popcorn() {

But if Popcorn were an interface type instead of a class type, then the new
anonymous class would be an implementer of the interface rather than a subclass of
the class. Look at the following example:

interface Cookable {
 public void cook();
}
class Food {
 Cookable c = new Cookable() {
 public void cook() {
 System.out.println("anonymous cookable implementer");
 }
 };
}

The preceding code, like the Popcorn example, still creates an instance of an
anonymous inner class, but this time the new just-in-time class is an implementer of the
Cookable interface. And note that this is the only time you will ever see the syntax

new Cookable()

where Cookable is an interface rather than a non-abstract class type. Because
think about it, you can't instantiate an interface, yet that's what the code looks
like it's doing. But of course it's not instantiating a Cookable object, it's creating an
instance of a new, anonymous, implementer of Cookable. You can read this line:

Plain-Old Anonymous Inner Classes, Flavor Two  651

ch8-1128f.indd 651 11/28/05 10:56:29 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Cookable c = new Cookable() {

as, "Declare a reference variable of type Cookable that, obviously, will refer to an
object from a class that implements the Cookable interface. But, oh yes, we don't
yet have a class that implements Cookable, so we're going to make one right here,
right now. We don't need a name for the class, but it will be a class that implements
Cookable, and this curly brace starts the definition of the new implementing class."

One more thing to keep in mind about anonymous interface implementers—they
can implement only one interface. There simply isn't any mechanism to say that
your anonymous inner class is going to implement multiple interfaces. In fact, an
anonymous inner class can't even extend a class and implement an interface at the
same time. The inner class has to choose either to be a subclass of a named class—
and not directly implement any interfaces at all—or to implement a single interface.
By directly, we mean actually using the keyword implements as part of the class
declaration. If the anonymous inner class is a subclass of a class type, it automatically
becomes an implementer of any interfaces implemented by the superclass.

Argument-Defined Anonymous Inner Classes
If you understood what we've covered so far in this chapter, then this last part will
be simple. If you are still a little fuzzy on anonymous classes, however, then you
should reread the previous sections. If they're not completely clear, we'd like to take
full responsibility for the confusion. But we'll be happy to share.

652  Chapter 8:   Inner Classes

Don't be fooled by any attempts to instantiate an interface except in the
case of an anonymous inner class. The following is not legal,

		 Runnable r = new Runnable(); // can't instantiate interface

whereas the following is legal, because it's instantiating an implementer of the
Runnable interface (an anonymous implementation class):

	 	 Runnable r = new Runnable() { // curly brace, not semicolon
 	 	 public void run() { }
		 };

ch8-1128f.indd 652 11/28/05 10:56:30 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Okay, if you've made it to this sentence, then we're all going to assume you
understood the preceding section, and now we're just going to add one new twist.
Imagine the following scenario. You're typing along, creating the Perfect Class, when
you write code calling a method on a Bar object, and that method takes an object of
type Foo (an interface).

class MyWonderfulClass {

 void go() {

 Bar b = new Bar();

 b.doStuff(ackWeDoNotHaveAFoo!); // Don't try to compile this at home

 }

}

interface Foo {

 void foof();

}

class Bar {

 void doStuff(Foo f) { }

}

No problemo, except that you don't have an object from a class that implements
Foo, and you can't instantiate one, either, because you don't even have a class that
implements Foo, let alone an instance of one. So you first need a class that
implements Foo, and then you need an instance of that class to pass to the Bar class's
doStuff() method. Savvy Java programmer that you are, you simply define an
anonymous inner class, right inside the argument. That's right, just where you least
expect to find a class. And here's what it looks like:

 1. class MyWonderfulClass {
 2. void go() {
 3. Bar b = new Bar();
 4. b.doStuff(new Foo() {
 5. public void foof() {
 6. System.out.println("foofy");
 7. } // end foof method
 8. }); // end inner class def, arg, and b.doStuff stmt.
 9. } // end go()
10. } // end class
11.
12. interface Foo {
13. void foof();
14. }
15. class Bar {
16. void doStuff(Foo f) { }
17. }

Argument-Defined Anonymous Inner Classes  653

ch8-1128f.indd 653 11/28/05 10:56:30 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

All the action starts on line 4. We're calling doStuff() on a Bar object, but
the method takes an instance that IS-A Foo, where Foo is an interface. So we must
make both an implementation class and an instance of that class, all right here in the
argument to doStuff(). So that's what we do. We write

 new Foo() {

to start the new class definition for the anonymous class that implements the Foo
interface. Foo has a single method to implement, foof(), so on lines 5, 6, and 7
we implement the foof() method. Then on line 8—whoa!—more strange syntax
appears. The first curly brace closes off the new anonymous class definition. But
don't forget that this all happened as part of a method argument, so the close
parenthesis,), finishes off the method invocation, and then we must still end the
statement that began on line 4, so we end with a semicolon. Study this syntax! You
will see anonymous inner classes on the exam, and you'll have to be very, very picky
about the way they're closed. If they're argument local, they end like this:

});

but if they're just plain-old anonymous classes, then they end like this:

};

Regardless, the syntax is not what you use in virtually any other part of Java, so
be careful. Any question from any part of the exam might involve anonymous inner
classes as part of the code.

Certification Objective

Static Nested Classes
We saved the easiest for last, as a kind of treat :)

You'll sometimes hear static nested classes referred to as static inner classes, but
they really aren't inner classes at all, by the standard definition of an inner class.
While an inner class (regardless of the flavor) enjoys that special relationship with
the outer class (or rather the instances of the two classes share a relationship), a
static nested class does not. It is simply a non-inner (also called "top-level") class
scoped within another. So with static classes it's really more about name-space
resolution than about an implicit relationship between the two classes.

654  Chapter 8:   Inner Classes

ch8-1128f.indd 654 11/28/05 10:56:30 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

A static nested class is simply a class that's a static member of the enclosing class:

class BigOuter {
 static class Nested { }
}

The class itself isn't really "static"; there's no such thing as a static class. The
static modifier in this case says that the nested class is a static member of the outer
class. That means it can be accessed, as with other static members, without having
an instance of the outer class.

Instantiating and Using Static Nested Classes
You use standard syntax to access a static nested class from its enclosing class. The
syntax for instantiating a static nested class from a non-enclosing class is a little
different from a normal inner class, and looks like this:

class BigOuter {
 static class Nest {void go() { System.out.println("hi"); } }
}
class Broom {
 static class B2 {void goB2() { System.out.println("hi 2"); } }
 public static void main(String[] args) {
 BigOuter.Nest n = new BigOuter.Nest(); // both class names
 n.go();
 B2 b2 = new B2(); // access the enclosed class
 b2.goB2();
 }
}

Which produces:

hi
hi 2

Instantiating and Using Static Nested Classes  655

Just as a static method does not have access to the instance variables and
non-static methods of the class, a static nested class does not have access to the instance
variables and non-static methods of the outer class. Look for static nested classes with
code that behaves like a nonstatic (regular inner) class.

ch8-1128f.indd 655 11/28/05 10:56:32 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Certification Summary
Inner classes will show up throughout the exam, in any topic, and these are some of
the exam's hardest questions. You should be comfortable with the sometimes bizarre
syntax, and know how to spot legal and illegal inner class definitions.

We looked first at "regular" inner classes, where one class is a member of another.
You learned that coding an inner class means putting the class definition of the
inner class inside the curly braces of the enclosing (outer) class, but outside of
any method or other code block. You learned that an inner class instance shares a
special relationship with a specific instance of the outer class, and that this special
relationship lets the inner class access all members of the outer class, including those
marked private. You learned that to instantiate an inner class, you must have a
reference to an instance of the outer class.

Next we looked at method-local inner classes—classes defined inside a method.
The code for a method-local inner class looks virtually the same as the code for any
other class definition, except that you can't apply an access modifier the way you
can with a regular inner class. You learned why method-local inner classes cannot
use non-final local variables declared within the method—the inner class instance
may outlive the stack frame, so the local variable might vanish while the inner class
object is still alive. You saw that to use the inner class you need to instantiate it, and
that the instantiation must come after the class declaration in the method.

We also explored the strangest inner class type of all—the anonymous inner
class. You learned that they come in two forms, normal and argument-local. Normal,
ho-hum, anonymous inner classes are created as part of a variable assignment,
while argument-local inner classes are actually declared, defined, and automatically
instantiated all within the argument to a method! We covered the way anonymous
inner classes can be either a subclass of the named class type, or an implementer of
the named interface. Finally, we looked at how polymorphism applies to anonymous
inner classes: you can invoke on the new instance only those methods defined in
the named class or interface type. In other words, even if the anonymous inner class
defines its own new method, no code from anywhere outside the inner class will be
able to invoke that method.

As if we weren't already having enough fun for one day, we pushed on to static
nested classes, which really aren't inner classes at all. Known as static nested classes,
a nested class marked with the static modifier is quite similar to any other non-
inner class, except that to access it, code must have access to both the nested
and enclosing class. We saw that because the class is static, no instance of the
enclosing class is needed, and thus the static nested class does not share a special
relationship with any instance of the enclosing class. Remember, static inner classes
can't access instance methods or variables.

656  Chapter 8: Inner Classes

ch8-1128f.indd 656 11/28/05 10:56:32 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Two-Minute Drill

Here are some of the key points from this chapter.

Inner Classes

q	 A "regular" inner class is declared inside the curly braces of another class, but
outside any method or other code block.

q	 An inner class is a full-fledged member of the enclosing (outer) class, so it
can be marked with an access modifier as well as the abstract or final
modifiers. (Never both abstract and final together— remember that
abstract must be subclassed, whereas final cannot be subclassed).

q	 An inner class instance shares a special relationship with an instance of the
enclosing class. This relationship gives the inner class access to all of the
outer class's members, including those marked private.

q	 To instantiate an inner class, you must have a reference to an instance of the
outer class.

q	 From code within the enclosing class, you can instantiate the inner class
using only the name of the inner class, as follows:
MyInner mi = new MyInner();

q	 From code outside the enclosing class's instance methods, you can
instantiate the inner class only by using both the inner and outer class names,
and a reference to the outer class as follows:
MyOuter mo = new MyOuter();

MyOuter.MyInner inner = mo.new MyInner();

q	 From code within the inner class, the keyword this holds a reference to
the inner class instance. To reference the outer this (in other words, the
instance of the outer class that this inner instance is tied to) precede the
keyword this with the outer class name as follows: MyOuter.this;

Method-Local Inner Classes

q	 A method-local inner class is defined within a method of the enclosing class.

q	 For the inner class to be used, you must instantiate it, and that instantiation
must happen within the same method, but after the class definition code.

q	 A method-local inner class cannot use variables declared within the method
(including parameters) unless those variables are marked final.

Two-Minute Drill  657

3

ch8-1128f.indd 657 11/28/05 10:56:33 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

q	 The only modifiers you can apply to a method-local inner class are abstract
and final. (Never both at the same time, though.)

Anonymous Inner Classes

q	 Anonymous inner classes have no name, and their type must be either a
subclass of the named type or an implementer of the named interface.

q	 An anonymous inner class is always created as part of a statement; don't
forget to close the statement after the class definition with a curly brace. This
is a rare case in Java, a curly brace followed by a semicolon.

q	 Because of polymorphism, the only methods you can call on an anonymous
inner class reference are those defined in the reference variable class (or
interface), even though the anonymous class is really a subclass or imple-
menter of the reference variable type.

q	 An anonymous inner class can extend one subclass or implement one
interface. Unlike non-anonymous classes (inner or otherwise), an anonymous
inner class cannot do both. In other words, it cannot both extend a class and
implement an interface, nor can it implement more than one interface.

q	 An argument-local inner class is declared, defined, and automatically
instantiated as part of a method invocation. The key to remember is that the
class is being defined within a method argument, so the syntax will end the
class definition with a curly brace, followed by a closing parenthesis to end
the method call, followed by a semicolon to end the statement: });

Static Nested Classes

q	 Static nested classes are inner classes marked with the static modifier.

q	� A static nested class is not an inner class, it's a top-level nested class.

q	� Because the nested class is static, it does not share any special relationship
with an instance of the outer class. In fact, you don't need an instance of the
outer class to instantiate a static nested class.

q	� Instantiating a static nested class requires using both the outer and nested
class names as follows:
BigOuter.Nested n = new BigOuter.Nested();

q	� A static nested class cannot access non-static members of the outer class,
since it does not have an implicit reference to any outer instance (in other
words, the nested class instance does not get an outer this reference).

658  Chapter 8:   Inner Classes

ch8-1128f.indd 658 11/28/05 10:56:34 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Self Test

The following questions will help you measure your understanding of the dynamic and life-altering
material presented in this chapter. Read all of the choices carefully. Take your time. Breathe.

	 1.	 Given:

public class MyOuter {
 public static class MyInner { public static void foo() { } }
}

Which, if placed in a class other than MyOuter or MyInner, instantiates an instance of the
nested class?

		 A.	 MyOuter.MyInner m = new MyOuter.MyInner();

		 B.	 MyOuter.MyInner mi = new MyInner();

		 C.	 MyOuter m = new MyOuter();

			 MyOuter.MyInner mi = m.new MyOuter.MyInner();

		 D.	 MyInner mi = new MyOuter.MyInner();

	 2.	 Which are true about a static nested class? (Choose all that apply.)
		 A.	 You must have a reference to an instance of the enclosing class in order to instantiate it.
		 B.	 It does not have access to non-static members of the enclosing class.
		 C.	 Its variables and methods must be static.
		 D.	 If the outer class is named MyOuter, and the nested class is named MyInner, it can be

 instantiated using new MyOuter.MyInner();.
		 E.	 It must extend the enclosing class.

	 3.	 Given:

		 public interface Runnable { void run(); }

 Which construct an anonymous inner class instance? (Choose all that apply.)
		 A.	 Runnable r = new Runnable() { };

		 B.	 Runnable r = new Runnable(public void run() { });

		 C.	 Runnable r = new Runnable { public void run(){}};

Self Test  659

ch8-1128f.indd 659 11/28/05 10:56:37 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

		 D.	 Runnable r = new Runnable() {public void run{}};
		 E.	 System.out.println(new Runnable() {public void run() { }});

		 F.	 System.out.println(new Runnable(public void run() {}));

4.		 Given:

class Boo {
 Boo(String s) { }
 Boo() { }
}
class Bar extends Boo {
 Bar() { }
 Bar(String s) {super(s);}
 void zoo() {
 // insert code here
 }
}

Which create an anonymous inner class from within class Bar? (Choose all that apply.)
		 A.	 Boo f = new Boo(24) { };

		 B.	 Boo f = new Bar() { };

		 C.	 Boo f = new Boo() {String s; };

		 D.	 Bar f = new Boo(String s) { };

		 E.	 Boo f = new Boo.Bar(String s) { };

	 5.	 Given:

1. class Foo {
2. class Bar{ }
3. }
4. class Test {
5. public static void main(String[] args) {
6. Foo f = new Foo();
7. // Insert code here
8. }
9. }

Which, inserted at line 7, creates an instance of Bar? (Choose all that apply.)
		 A.	 Foo.Bar b = new Foo.Bar();

		 B.	 Foo.Bar b = f.new Bar();

		 C.	 Bar b = new f.Bar();

660  Chapter 8:   Inner Classes

ch8-1128f.indd 660 11/28/05 10:56:37 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

		 D.	 Bar b = f.new Bar();

		 E.	 Foo.Bar b = new f.Bar();

6.	 	 Which are true about a method-local inner class? (Choose all that apply.)

		 A.	 It must be marked final.
		 B.	 It can be marked abstract.
		 C.	 It can be marked public.
		 D.	 It can be marked static.
		 E.	 It can access private members of the enclosing class.

	 7.	 Which are true about an anonymous inner class? (Choose all that apply.)

		 A.	 It can extend exactly one class and implement exactly one interface.
		 B.	 It can extend exactly one class and can implement multiple interfaces.
		 C.	 It can extend exactly one class or implement exactly one interface.
		 D.	 It can implement multiple interfaces regardless of whether it also extends a class.
		 E.	 It can implement multiple interfaces if it does not extend a class.

	 8.	 Given:

public class Foo {
 Foo() {System.out.print("foo");}
 class Bar{
 Bar() {System.out.print("bar");}
 public void go() {System.out.print("hi");}
 }
 public static void main(String[] args) {
 Foo f = new Foo();
 f.makeBar();
 }
 void makeBar() {
 (new Bar() {}).go();
 }
}

What is the result?
		 A.	 Compilation fails.
		 B.	 An error occurs at runtime.
		 C.	 foobarhi
		 D.	 barhi
		 E.	 hi
		 F. foohi

Self Test  661

ch8-1128f.indd 661 11/28/05 10:56:37 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

9.		 Given:

 1. public class TestObj {
 2. public static void main(String[] args) {
 3. Object o = new Object() {
 4. public boolean equals(Object obj) {
 5. return true;
 6. }
 7. }
 8. System.out.println(o.equals("Fred"));
 9. }

10. }

What is the result?

		 A.	 An exception occurs at runtime.
		 B.	 true

		 C.	 Fred

		 D.	 Compilation fails because of an error on line 3.
		 E.	 Compilation fails because of an error on line 4.
		 F.	 Compilation fails because of an error on line 8.
		 G.	 Compilation fails because of an error on a line other than 3, 4, or 8.

	10.	 Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. Horse h = (Horse) obj;
11. System.out.println(h.name);
12. }
13. }

662  Chapter 8:   Inner Classes

ch8-1128f.indd 662 11/28/05 10:56:37 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

What is the result?
		 A.	 An exception occurs at runtime at line 10.
		 B.	 Zippo

		 C.	 Compilation fails because of an error on line 3.
		 D.	 Compilation fails because of an error on line 9.
		 E.	 Compilation fails because of an error on line 10.
		 F.	 Compilation fails because of an error on line 11.

11.	 Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

What is the result?
		 A.	 An exception occurs at runtime at line 10.
		 B.	 Zippo

		 C.	 Compilation fails because of an error on line 3.
		 D.	 Compilation fails because of an error on line 9.
		 E.	 Compilation fails because of an error on line 10.

Self Test  663

ch8-1128f.indd 663 11/28/05 10:56:38 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

12.	 Given:

public abstract class AbstractTest {
 public int getNum() {
 return 45;
 }
 public abstract class Bar {
 public int getNum() {
 return 38;
 }
 }
 public static void main(String[] args) {
 AbstractTest t = new AbstractTest() {
 public int getNum() {
 return 22;
 }
 };
 AbstractTest.Bar f = t.new Bar() {
 public int getNum() {
 return 57;
 }
 };
 System.out.println(f.getNum() + " " + t.getNum());
 }
}

What is the result?
		 A.	 57 22
		 B.	 45 38
		 C.	 45 57
		 D.	 An exception occurs at runtime.
		 E.	 Compilation fails.

664  Chapter 8:   Inner Classes

ch8-1128f.indd 664 11/28/05 10:56:38 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

Self Test Answers

	 1.	 Given:

public class MyOuter {
 public static class MyInner { public static void foo() { } }
}

Which, if placed in a class other than MyOuter or MyInner, instantiates an instance of the
nested class?

		 A.	 MyOuter.MyInner m = new MyOuter.MyInner();

		 B.	 MyOuter.MyInner mi = new MyInner();

		 C.	 MyOuter m = new MyOuter();

			 MyOuter.MyInner mi = m.new MyOuter.MyInner();

		 D.	 MyInner mi = new MyOuter.MyInner();

		 Answer:

	 	 ® 3  A is correct. MyInner is a static nested class, so it must be instantiated using the fully		
	 scoped name of MyOuter.MyInner.

		 ®̊   B is incorrect because it doesn't use the enclosing name in the new. C is incorrect
 because it uses incorrect syntax. When you instantiate a nested class by invoking new on
 an instance of the enclosing class, you do not use the enclosing name. The difference
 between A and C is that C is calling new on an instance of the enclosing class rather
 than just new by itself. D is incorrect because it doesn't use the enclosing class name in
 the variable declaration.

	 2.	 Which are true about a static nested class? (Choose all that apply.)
		 A.	 You must have a reference to an instance of the enclosing class in order to instantiate it.
		 B.	 It does not have access to non-static members of the enclosing class.
		 C.	 Its variables and methods must be static.
		 D.	 If the outer class is named MyOuter, and the nested class is named MyInner, it can be

 instantiated using new MyOuter.MyInner();.
		 E.	 It must extend the enclosing class.

		 Answer:

	 	 ® 3   B and D. B is correct because a static nested class is not tied to an instance of the
 enclosing class, and thus can't access the non-static members of the class (just as a
 static method can't access non-static members of a class). D uses the correct syntax
 for instantiating a static nested class.

Self Test Answers  665

ch8-1128f.indd 665 11/28/05 10:56:39 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

		 ®̊   A is incorrect because static nested classes do not need (and can't use) a reference to an
 instance of the enclosing class. C is incorrect because static nested classes can declare and
 define non-static members. E is wrong because…it just is. There's no rule that says an
 inner or nested class has to extend anything.

	 3.	 Given:

		 public interface Runnable { void run(); }

 Which construct an anonymous inner class instance? (Choose all that apply.)
		 A.	 Runnable r = new Runnable() { };

		 B.	 Runnable r = new Runnable(public void run() { });

		 C.	 Runnable r = new Runnable { public void run(){}};

		 D.	 Runnable r = new Runnable() {public void run{}};
		 E.	 System.out.println(new Runnable() {public void run() { }});

		 F.	 System.out.println(new Runnable(public void run() {}));

		 Answer:

	 	 ® 3   E is correct. It defines an anonymous inner class instance, which also means it creates an
 instance of that new anonymous class at the same time. The anonymous class is an
 implementer of the Runnable interface, it must override the run() method of Runnable.

		 ®̊   A is incorrect because it doesn't override the run() method, so it violates the rules of
 interface implementation. B, C, and D use incorrect syntax.

4.		 Given:

class Boo {
 Boo(String s) { }
 Boo() { }
}
class Bar extends Boo {
 Bar() { }
 Bar(String s) {super(s);}
 void zoo() {
 // insert code here
 }
}

Which create an anonymous inner class from within class Bar? (Choose all that apply.)
		 A.	 Boo f = new Boo(24) { };

		 B.	 Boo f = new Bar() { };

		 C.	 Boo f = new Boo() {String s; };

		 D.	 Bar f = new Boo(String s) { };

		 E.	 Boo f = new Boo.Bar(String s) { };

666  Chapter 8:   Inner Classes

ch8-1128f.indd 666 11/28/05 10:56:39 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

		 Answer:

	 	 ® 3 B and C. B is correct because anonymous inner classes are no different from any other
 class when it comes to polymorphism. That means you are always allowed to declare a
 reference variable of the superclass type and have that reference variable refer to an
 instance of a subclass type, which in this case is an anonymous subclass of Bar. Since Bar
 is a subclass of Boo, it all works. C uses correct syntax for creating an instance of Boo.

		 ®̊   A is incorrect because it passes an int to the Boo constructor, and there is no matching
 constructor in the Boo class. D is incorrect because it violates the rules of polymorphism;
 you cannot refer to a superclass type using a reference variable declared as the subclass
 type. The superclass doesn't have everything the subclass has. E uses incorrect syntax.

	 5.	 Given:

1. class Foo {
2. class Bar{ }
3. }
4. class Test {
5. public static void main(String[] args) {
6. Foo f = new Foo();
7. // Insert code here
8. }
9. }

Which, inserted at line 7, creates an instance of Bar? (Choose all that apply.)
		 A.	 Foo.Bar b = new Foo.Bar();

		 B.	 Foo.Bar b = f.new Bar();

		 C.	 Bar b = new f.Bar();

		 D.	 Bar b = f.new Bar();

		 E.	 Foo.Bar b = new f.Bar();

		 Answer:

	 	 ® 3   B is correct because the syntax is correct—using both names (the enclosing class and the
 inner class) in the reference declaration, then using a reference to the enclosing class to
 invoke new on the inner class.

		 ®̊   A, C, D, and E all use incorrect syntax. A is incorrect because it doesn't use a reference
 to the enclosing class, and also because it includes both names in the call to new. C is
 incorrect because it doesn't use the enclosing class name in the reference variable
 declaration, and because the new syntax is wrong. D is incorrect because it doesn't use
 the enclosing class name in the reference variable declaration. E is incorrect because the
 new syntax is wrong.

Self Test Answers  667

ch8-1128f.indd 667 11/28/05 10:56:40 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

6.	 Which are true about a method-local inner class? (Choose all that apply.)
		 A.	 It must be marked final.
		 B.	 It can be marked abstract.
		 C.	 It can be marked public.
		 D.	 It can be marked static.
		 E.	 It can access private members of the enclosing class.

		 Answer:

	 	 ® 3   B and E. B is correct because a method-local inner class can be abstract, although it
 means a subclass of the inner class must be created if the abstract class is to be used (so
 an abstract method-local inner class is probably not useful). E is correct because a
 method-local inner class works like any other inner class—it has a special relationship to
 an instance of the enclosing class, thus it can access all members of the enclosing class.

		 ®̊   A is incorrect because a method-local inner class does not have to be declared final
 (although it is legal to do so). C and D are incorrect because a method-local inner class
 cannot be made public (remember—local variables can't be public) or static.

7.	 	 Which are true about an anonymous inner class? (Choose all that apply.)
		 A.	 It can extend exactly one class and implement exactly one interface.
		 B.	 It can extend exactly one class and can implement multiple interfaces.
		 C.	 It can extend exactly one class or implement exactly one interface.
		 D.	 It can implement multiple interfaces regardless of whether it also extends a class.
		 E.	 It can implement multiple interfaces if it does not extend a class.

		 Answer:

	 	 ® 3   C is correct because the syntax of an anonymous inner class allows for only one named
 type after the new, and that type must be either a single interface (in which case the
 anonymous class implements that one interface) or a single class (in which case the
 anonymous class extends that one class).

		 ®̊   A, B, D, and E are all incorrect because they don't follow the syntax rules described in
 the response for answer C.

	 8.	 Given:

public class Foo {
 Foo() {System.out.print("foo");}
 class Bar{
 Bar() {System.out.print("bar");}
 public void go() {System.out.print("hi");}
 }
 public static void main(String[] args) {

668  Chapter 8:   Inner Classes

ch8-1128f.indd 668 11/28/05 10:56:40 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

 Foo f = new Foo();
 f.makeBar();
 }
 void makeBar() {
 (new Bar() {}).go();
 }
}

What is the result?
		 A.	 Compilation fails.
		 B.	 An error occurs at runtime.
		 C.	 foobarhi
		 D.	 barhi
		 E.	 hi
		 F. foohi

		 Answer:

	 	 ® 3   C is correct because first the Foo instance is created, which means the Foo constructor
 runs and prints foo. Next, the makeBar() method is invoked, which creates a Bar,
 which means the Bar constructor runs and prints bar, and finally an instance is created
 (of an anonymous subtype of Bar), from which the go() method is invoked. Note that the
 line (new Bar() {}).go(); creates a little tiny anonymous inner class, a subtype of Bar.

		 ®̊   A, C, D, E, and F are incorrect based on the program logic described above.

9.		 Given:

 1. public class TestObj {
 2. public static void main(String[] args) {
 3. Object o = new Object() {
 4. public boolean equals(Object obj) {
 5. return true;
 6. }
 7. }
 8. System.out.println(o.equals("Fred"));
 9. }

10. }

What is the result?

		 A.	 An exception occurs at runtime.
		 B.	 true

		 C.	 fred

		 D.	 Compilation fails because of an error on line 3.

Self Test Answers  669

ch8-1128f.indd 669 11/28/05 10:56:40 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

		 E.	 Compilation fails because of an error on line 4.
		 F.	 Compilation fails because of an error on line 8.
		 G.	 Compilation fails because of an error on a line other than 3, 4, or 8.

		 Answer:

	 	 ® 3   G. This code would be legal if line 7 ended with a semicolon. Remember that line 3 is a
 statement that doesn't end until line 7, and a statement needs a closing semicolon!

		 ®̊   A, B, C, D, E, and F are incorrect based on the program logic described above. If the
 semicolon were added at line 7, then answer B would be correct—the program would
 print true, the return from the equals() method overridden by the anonymous
 subclass of Object.

10.	 Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. Horse h = (Horse) obj;
11. System.out.println(h.name);
12. }
13. }

What is the result?
		 A.	 An exception occurs at runtime at line 10.
		 B.	 Zippo

		 C.	 Compilation fails because of an error on line 3.
		 D.	 Compilation fails because of an error on line 9.
		 E.	 Compilation fails because of an error on line 10.
		 F.	 Compilation fails because of an error on line 11.

		 Answer:

	 	 ® 3   B. The code in the HorseTest class is perfectly legal. Line 9 creates an instance of the
 method-local inner class Horse, using a reference variable declared as type Object. Line

670  Chapter 8:   Inner Classes

ch8-1128f.indd 670 11/28/05 10:56:41 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

 10 casts the Horse object to a Horse reference variable, which allows line 11 to compile.
 If line 10 were removed, the HorseTest code would not compile, because class Object
 does not have a name variable.

		 ®̊   A, C, D, E, and F are incorrect based on the program logic described above.

11.	 Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

What is the result?
		 A.	 An exception occurs at runtime at line 10.
		 B.	 Zippo

		 C.	 Compilation fails because of an error on line 3.
		 D.	 Compilation fails because of an error on line 9.
		 E.	 Compilation fails because of an error on line 10.

		 Answer:

	 	 ® 3   E. This code is identical to the code in question 10, except the casting statement has
 been removed. If you use a reference variable of type Object, you can access only those
 members defined in class Object.

		 ®̊   A, B, C, and D are incorrect based on the program logic described above.

Self Test Answers  671

ch8-1128f.indd 671 11/28/05 10:56:41 AM

CertPrs8/Java 5 Cert. Study Guide/Sierra-Bates/225360-6/Chapter 8

12.	 Given:
public abstract class AbstractTest {
 public int getNum() {
 return 45;
 }
 public abstract class Bar {
 public int getNum() {
 return 38;
 }
 }
 public static void main(String[] args) {
 AbstractTest t = new AbstractTest() {
 public int getNum() {
 return 22;
 }
 };
 AbstractTest.Bar f = t.new Bar() {
 public int getNum() {
 return 57;
 }
 };
 System.out.println(f.getNum() + " " + t.getNum());
} }

What is the result?
		 A.	 57 22
		 B.	 45 38
		 C.	 45 57
		 D.	 An exception occurs at runtime.
		 E.	 Compilation fails.

		 Answer:

	 	 ® 3   A. You can define an inner class as abstract, which means you can instantiate only
 concrete subclasses of the abstract inner class. The object referenced by the variable t
 is an instance of an anonymous subclass of AbstractTest, and the anonymous class
 overrides the getNum() method to return 22. The variable referenced by f is an instance
 of an anonymous subclass of Bar, and the anonymous Bar subclass also overrides the
 getNum() method (to return 57). Remember that to create a Bar instance, we need an
 instance of the enclosing AbstractTest class to tie to the new Bar inner class instance.
 AbstractTest can't be instantiated because it's abstract, so we created an anonymous
 subclass (non-abstract) and then used the instance of that anonymous subclass to tie
 to the new Bar subclass instance.

		 ®̊   B, C, D, E, and F are incorrect based on the program logic described above.

672  Chapter 8:   Inner Classes

ch8-1128f.indd 672 11/28/05 10:56:41 AM

